16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Book: PIC Microcontrollers
TOC Introduction Ch. 1 Ch.2 Ch.3 Ch4. Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 App.A App.B App.C

Introduction: World of microcontrollers

The situation we find ourselves today in the field of microcontrollers had its beginnings in the development of technology of integrated circuits. This development has enabled us to store
hundreds of thousands of transistors into one chip. That was a precondition for the manufacture of microprocessors. The first computers were made by adding external peripherals such as
memory, input/output lines, timers and others to it. Further increasing of package density resulted in creating an integrated circuit which contained both processor and peripherals. That is
how the first chip containing a microcomputer later known as a microcontroller has developed.

This is how it all got started...

In the year 1969, a team of Japanese engineers from BUSICOM came to the USA with a request that a few integrated circuits for calculators were to be designed according to their projects.
The request was sent to INTEL and Marcian Hoff was in charge of the project there. Having experience working with a computer, the PDP8, he came up with an idea to suggest
fundamentally different solutions instead of the suggested design. This solution presumed that the operation of integrated circuit was to be determined by the program stored in the circuit
itself. It meant that configuration would be simpler, but it would require far more memory than the project proposed by Japanese engineers. After a while, even though the Japanese
engineers were trying to find an easier solution, Marcian’s idea won and the first microprocessor was born. A major help with turning an idea into a ready-to-use product was Federico
Faggin. Nine months after hiring him, Intel succeeded in developing such a product from its original concept. In 1971 Intel obtained the right to sell this integrated circuit. Before that Intel
bought the license from BUSICOM which had no idea what a treasure it had. During that year, a microprocessor called the 4004 appeared on the market. That was the first 4-bit
microprocessor with the speed of 6000 operations per second. Not long after that, an American company CTC requested from Intel and Texas Instruments to manufacture an 8-bit
microprocessor to be applied in terminals. Even though CTC gave up this project, Intel and Texas Instruments kept working on the microprocessor and in April 1972 the first 8-bit
microprocessor called the 8008 appeared on the market. It was able to address 16Kb of memory, had 45 instructions and the speed of 300 000 operations per second. That microprocessor
was the predecessor of all today’s microprocessors. Intel kept on developing it and in April 1974 it launched an 8-bit processor called the 8080. It was able to address 64Kb of memory, had
75 instructions and initial price was $360.

Another American company called Motorola, quickly realized what was going on, so they launched 8-bit microprocessor 6800. Their chief constructor was Chuck Peddle. Apart from the
processor itself, Motorola was the first company that also manufactured other peripherals such as the 6820 and 6850. At that ime many companies recognized the greater importance of
microprocessors and began their own development. Chuck Peddle left Motorola to join MOS Technology and kept working intensively on developing microprocessors.

Atthe WESCON exhibition in the USA in 1975, a crucial eventin the history of the microprocessors took place. MOS Technology announced that it was selling processors 6501 and 6502 at
$25 each, thatinterested customers could purchase immediately. It was such a sensation that many thought it was a kind of fraud, considering that competing companies were selling the
8080 and 6800 at $179 each. On the first day of the exhibit, in response to the competitor, both Motorola and Intel cut the prices of their microprocessors to $69.95. Motorola accused MOS
Technology and Chuck Peddle of plagiarizing the protected 6800. Because of that, MOS Technology gave up further manufacture of the 6501, but kept manufacturing the 6502. It was the 8-
bit microprocessor with 56 instructions and ability to directly address 64Kb of memory. Due to low price, 6502 became very popular so it was installed into computers such as KIM-1, Apple |,
Apple Il, Atari, Commodore, Acorn, Oric, Galeb, Orao, Ultra and many others. Soon several companies began manufacturing the 6502 (Rockwell, Sznertek, GTE, NCR, Ricoh, Commodore
took over MOS Technology). In the year of its prosperity 1982, this processor was being sold at a rate of 15 million processors per year!

Other companies did not want to give up either. Frederico Faggin left Intel and started his own company Zilog Inc. In 1976 Zilog announced the Z80. When designing this microprocessor
Faggin made a crucial decision. The 8080 had already been developed and he realized that many would remain loyal to that processor because of the great expenditures which rewriting of
all the programs would resultin. Accordingly he decided that a new processor had to be compatible with the 8080, i.e. it had to be able to perform all the programs written for the 8080. Apart
from that, many other features have been added so that the Z80 was the most powerful microprocessor at that time. It was able to directly address 64Kb of memory, had 176 instructions, a
large number of registers, a built-in option for refreshing dynamic RAM memory, a single power supply, greater operating speed etc. The Z80 was a great success and everybody replaced
the 8080 by the Z80. Certainly the Z80 was commercially the most successful 8-bit microprocessor at that time. Besides Zilog, other new manufacturers such as Mostek, NEC, SHARP and
SGS appeared soon. The Z80 was the heart of many computers such as: Spectrum, Partner, TRS703, Z-3 and Galaxy.

In 1976 Intel came up with an upgraded version of the 8-bit microprocessor called the 8085. However, the Z80 was so much better that Intel lost the battle. Even though a few more
microprocessors appeared later on the market (6809, 2650, SC/MP etc.), the die had already been cast. There were no such greatimprovements which could make manufacturers to
change their mind, so the 6502 and Z80 along with the 6800 remained chief representatives of the 8-bit microprocessors of that time.

Microcontroller versus Microprocessor

A microcontroller differs from a microprocessor in many ways. The first and most important difference is its functionality. In order that the microprocessor may be used, other components
such as memory must be added to it. Even though the microprocessors are considered to be powerful computing machines, their weak pointis that they are not adjusted to communicating
to peripheral equipment.

Simply, In order to communicate with peripheral environment, the microprocessor must use specialized circuits added as external chips. In short microprocessors are the pure heart of the
computers. This is how it was in the beginning and remains the same today.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 1/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Microprocessor

-

Oscillator
0 - 40MHz

Tirers

Mamory

VO Ports

Microcontroller

Fig. 0-1 Microcontroller versus Microprocessor

On the other hand, the microcontroller is designed to be all of thatin one. No other specialized external components are needed for its application because all necessary circuits which
otherwise belong to peripherals are already built into it. It saves the time and space needed to design a device.

BASIC CONCEPT

Did you know that all people can be classified into one of 10 groups- those who are familiar with binary number system and those who are not familiar with it. You don’t understand? That
means that you still belong to the later group. If you want to change your status read the following text describing briefly some of the basic concepts used further in this book (just to be sure
we are on the same page).

World of Numbers

Mathematics is such a good science! Everything is so logical and simple as that. The whole universe can be described with ten digits only. But, does it really have to be like that? Do we
need exactly ten digits? Of course not, itis only a matter of habit. Remember the lessons from the school. For example, what does the number 764 mean: four units, six tens and seven
hundreds. Simple! Could it be described in a bit more complicated way? Of course it could: 4 + 60 + 700. Even more complicated? Naturally: 4*1 + 6*10 + 7*100. Could this number look a
bit more scientific? The answer is yes: 4*1070 + 6*10"1 + 7*10”2. What does it actually mean? Why do we use exactly these numbers: 100, 101 and 102 ? Why is it always about the
number 10? Thatis because we use ten different digits (0, 1, 2, ... 8, 9). In other words, because we use base-10 number system, i.e. decimal number system.

Hundreds (second position in number)

Tens (first position in number)
li Units (zeroth position in number)

% [764 = 4+ 60+ 700
5 =10
o 0= 10
5§ 2
53 —[100-10
S5 | 764=41+610+7100
]
T £
85
= [14]
c @
o £
=

| 7644100+ 610 + 7107

[Base-10 number system |

Fig. 0-2 The number 764 represented in three different ways
Binary Number System

What would happen if only two digits would be used- 0 and 1? Or if we would not know to determine whether something is 3 or 5 times greater than something else? Or if we would be
restricted when comparing two sizes, i.e. if we could only state that something exists (1) or does not exist (0)? Nothing special would happen, we would keep on using numbers in the same
way, but they would look a bit different. For example: 11011010. How many pages of a book does the number 11011010 include? In order to learn that, follow the same logic like in the
previous example, butin reverse order. Bear in mind that all this is about mathematics with only two digits- 0 and 1, i.e. base-2 number system (binary number system).

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 2/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Seventh position in number

Zeroth position in number
Base-2 number system

11011010 = 1-27 + 1-2° + 025+ 1-2* + 1-2° + 0-2* + 1-2' + 0-2°

LTIV

11011010=128 +64 + 0 +16 + 8 +
A

[Number 218 in binary system | [Number 218 in decimal system |

+ + 8

Fig. 0-3 The number 218 represented in binary and decimal system

Clearly, itis the same number represented in two different ways. The only difference is in the number of digits necessary for writing some number. One digit (2) is used to write the number 2
in decimal system, whereas two digits (1 and 0) are used to write that number in binary system. Do you now agree that there are 10 groups of people? Welcome to the world of binary
arithmetic! Do you have any idea where itis used?

Excepting strictly controlled laboratory conditions, the most complicated electronic circuits cannot accurately determine the difference between two sizes (two voltage values, for example) if
they are too small (lower than several volts). The reasons are electrical noises and something called the “real working environment” (unpredictable changes of power supply voltage,
temperature changes, tolerance to values of builtin components etc.). Imagine a computer which would operate upon decimal numbers by recognizing 10 digits in the following way: 0=0V,
1=5V, 2=10V, 3=15V, 4=20V... 9=45V |? Did anybody say batteries? A far simpler solution is the use of binary logic where 0 indicates that there is no voltage and 1 indicates that there is
voltage. Itis easier to write 0 or 1 instead of “there is no voltage” or “there is voltage”. Itis called logic zero (0) and logic one (1) which electronics perfectly conforms with and easily performs
all those endlessly complex mathematical operations. Itis electronics which in reality applies mathematics in which all numbers are represented by two digits only and in which itis only
important to know whether there is voltage or not. Of course, we are talking about digital electronics.

Hexadecimal Number System

Atthe very beginning of computer development it was realized that people had many difficulties in handling binary numbers. Because of this, a new numbering system had to be
established. This time, a number system using 16 different digits. The first ten digits are the same as digits we are used to (0, 1, 2, 3,... 9) but there are six digits more. In order to keep from
making up new symbols, the six letters of alphabet A, B, C, D, E and F are used. A hexadecimal number system consisting of digits: 0, 1,2,3,4,5,6,7,8,9,A,B,C, D, E, F has been
established. What is the purpose of this seemingly bizarre combination? Just look how perfectly everything fits the story about binary numbers.

== Same number in hexadeci-
<] A F _|> mal system

8-digit binary number—= 1010 1111
Fig. 0-4 Binary and Hexadecimal number

The largest number that can be represented by 4 binary digits is the number 1111. It corresponds to the number 15 in decimal system. That number is in hexadecimal system represented by
only one digit F. It is the largest onedigit number in hexadecimal system. Do you see how skillfully itis used? The largest number written with eightdigits is at the same time the largest
twodigit hexadecimal number. Bear in mind that the computer uses 8-digit binary numbers.

BCD Code

BCD code is actually a binary code for decimal numbers only. Itis used to enable electronic circuits to communicate in a decimal number system with peripherals and in a binary system
within “their own world”. It consists of fourdigit binary numbers which represent the first ten digits (0, 1, 2, 3 ... 8, 9). Even though four digits can give a total of 16 possible combinations, only
the first ten are used.

Number System Conversion

The binary numbering system is the most commonly used, the decimal system is the most understandable while the hexadecimal system is somewhere between them. Therefore, itis very
important to learn how to convert numbers from one numbering system to another, i.e. how to turn a series of zeros and units into values understandable to us.

Binary to Decimal Number Conversion

Digits in a binary number have different values depending on their position in that number. Additionally, each position can contain either 1 or 0 and its value may be easily determined by its
position from the right. To make the conversion of a binary number to decimal itis necessary to multiply values with the corresponding digits (0 or 1) and add all the results. The magic of
binary to decimal number conversion works...You doubt? Look at the example:

110 =172/2 + 12/ +0°2/0 = 6

It should be noted that for decimal numbers from 0 to 3 you only need two binary digits. For greater values, extra binary digits must be added. Thus, for numbers from 0 to 7 you need three
digits, for numbers from 0 to 15- four digits etc. Simply speaking, the largest binary number consisting of n digits is obtained when the base 2 is raised by n. The result should be then
subtracted by 1. For example, if n=4:

2M -1=16-1=15
Accordingly, using 4 binary digits it is possible to represent decimal numbers from 0 to 15, including these two digits, which amounts to 16 different values in total.
Hexadecimal to Decimal Number Conversion

In order to make conversion of a hexadecimal number to decimal, each hexadecimal digit should be multiplied with the number 16 raised by its position value. For example:

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 3/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

A3TE (number in hexadecimal system)

14-16° = 14-1 = 14
7-16'=7-16 = 112
3-16°=3-256 = 768
10-16* = 10-4096 = 40960
41854 (same number in decimal system)

Fig.0-5H lecimal to decimal ber conversion

Hexadecimal to Binary Number Conversion

Itis not necessary to perform any calculation in order to convert hexadecimal numbers to binary numbers. Hexadecimal digits are simply replaced by the appropriate four binary digits. Since
the maximum hexadecimal digit is equivalent to decimal number 15, we need to use four binary digits to represent one hexadecimal digit. For example:

E4 = 11100100

T

E 4

Fig. 0-6 Hexadecimal to binary number conversion

DEC BINARY 38 Marking Numbers
oOo/oj0oj0j0|0|0O]|O 0 . .) - .
1 0/o0lololololol1 1 The hexadecimal numbering system is along with binary and decimal
20 Il] '0 0 I olo 1 D 2 number systems considered to be the most important for us. It is easy to
alolo/ofofolol1]1 3 make conversion of any hexadecimal number to binary and it is also
4/ 0/0/0/0/0|1]|0]|0 4 easy to remember it. However, these conversions may cause confusion.
5 0/0o/0/0|0O|1/0/1 5 For example, what does the statement “It is necessary to countup 110
6/ 0/0/0/0/0|1]|1]|0 6 products on assembly line” actually mean? Depending on whether itis
7/ 0/0/0[{0 01|11 7 about binary, decimal or hexadecimal, the result could be 6, 110 or 272
8 0/0j0j0/1/0/0|0 8 products, respectively! Accordingly, in order to avoid misunderstanding,
9/ 0/ 0/0/0[1/0/01 9 different prefixes and suffixes are directly added to the numbers. The
10,0/0/0/0/1/0/1/0 A prefix $ or Ox as well as the suffix h marks the numbers in hexadecimal
1; g g g g : :’ :’ ‘1} ﬁ system. For example, hexadecimal number 10AF may look as follows
i3 000011101 D $10AF, 0x10AF or 10AFh. Similarly, binary numbers usually get the
14|o0/ololol1(1/1]0 E suffix % or Ob, whereas decimal numbers get the suffix D.
15/0/0/0/0(1[1[1 /1] F
16 |[0/0 /0|1 /0|0|0|0O| 10
i7|ojojo|1|0(0|O 1] 11
253 (1|11 |1|1|1[0|1| FD
254 11|/1|1](1(1]|1]|1[0| FE
255 (1|1 |1]1|1|1|1|1]| FF

Comparative table below contains the values
of numbers 0-255 in three different numbering
systems.

Bit
Theory says a bitis the basic unit of information... Let's forget this dry explanation for a moment and take a look at whatitis in practice. The answer is nothing special a bitis a binary digit.
Similar to decimal number system in which digits in a number do not have the same value (for example digits in the number 444 are the same, but have different values), the “significance”

of the bit depends on the position it has in the binary number. Therefore, there is no point talking about units, tens etc. Instead, here itis about the zero bit (rightmost bit), first bit (second from
the right) etc. In addition, since the binary system uses two digits only (0 and 1), the value of one bitcan be 0 or 1.

Don’t be confused if you find some bit has value 4, 16 or 64. It means that bit's values are represented in decimal system. Simply, we have got so much accustomed to the usage of decimal
numbers that these expressions became common. It would be correct to say for example, “the value of sixth bitin binary number is equivalent to decimal number 64”. But we are human and
habits die hard... Besides, how would it sound “number: one-onezero- one-zero..."

Byte

A byte or a program word consists of eight bits grouped together. If a bitis a digit, it is logical that bytes represent numbers. All mathematical operations can be performed upon them, like
upon common decimal numbers. As is the case with digits of any other number, byte digits do not have the same significance. The largest value has the leftmost bit called the most
significant bit (MSB). The rightmost bit has the least value and is therefore called the least significant bit (LSB). Since eight zeros and units of one byte can be combined in 256 different
ways, the largest decimal number which can be represented by one byte is 255 (one combination represents zero).

Anibble is referred to as half a byte. Depending on which half of the byte we are talking about (left or right), there are “high” and “low” nibbles.

*High nibble” “Low nibble”

A A
[%

e[Bit 7] Bit 6] Bit 5| Bit 4| Bit 3| Bit 2 Bit 1] Bit 0]

=

MSE - Most Significant Bit

LSB - Least Significant Bit
Fig. 0-8 High and Low nibbles

Logic Circuits

Have you ever wondered what electronics within some digital integrated circuits, microcontrollers or processors look like? What do the circuits performing complicated mathematical
operations and making decisions look like? Do you know that their seemingly complicated schematics comprise only a few different elements called “logic circuits” or “logic gates”?

The operation of these elements is based on the principles established by British mathematician George Boole in the middle of the 19th century- even before the first bulb was invented! In

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 4/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

brief, the main idea was to express logical forms through algebraic functions. Such thinking was soon transformed into a practical product which far later evaluated in what today is known as
AND, OR and NOT logic circuits. The principle of their operation is known as Boolean algebra. As some program instructions used by the microcontroller perform the same way as logic
gates exceptin the form of commands, the principle of their operation will be discussed here.

AND Gate

Alogic gate “AND” has two or more inputs and one output. Let us presume that the gate used in this case has only two inputs. A logic one (1) will appear on its output only in case both
inputs (A AND B) are driven to logic one (1).

The table shows mutual dependence between inputs and output.

When the gate has more than two inputs, the principle of operation is the same: a logic one (1) will appear on its output only A
if case all inputs are driven to logic one (1). Any other combination of input voltages will result in a logic zero (0) at its output.

B_

When used in a program, a logic AND operation is performed by the program instruction, which will be discussed later. For the time
A |1 10 nl-llolol.' prog 9 P P y prog

being, itis enough to remember that logic AND in a program refers to the corresponding bits of two registers.

B 0/1/1/0/1/0/0j0

Resut [JEIICIEICA0

OR Gate

Similarly to the previous case, OR gates also have two or more inputs and one output. A logic one (1) will appear on its
output if either input (A OR B) is driven to logic one (1). If all inputs are at logic zero (0), the output will be driven to logic zero

(0).

A 11 D DI 1 |n|o 1 ‘ In a program, logic OR operation is performed between the corresponding registers’ bits- the same as in logic AND operation.

B 0/111/0[1/0/ojo

A1 11/0/1/0/0/1

NOT Gate

This logic gate has only one input and only one output. It operates in an extremely simple way. When logic zero (0) appears
on its input, a logic one (1) appears on its output and vice versa. This means that this gate inverts the signal by itself. Itis
sometimes called inverter.

|1 \1 ‘u 1 |o|ol 1 ‘ If a program, logic NOT operation is performed on one byte. The resultis a byte with inverted bits. If byte is considered to be a number,
' the inverted value is actually a complement of that number, i.e. the complement of a number is what is needed to add to it to make it

reach the maximal 8 bit value (255).

auia00/1/1/0/1/1/0]

EXCLUSIVE OR Gate

The EXCLUSIVE OR (XOR) gate is a bit complicated comparing to other gates. It represents a combination of all the previously described gates. A logic one A
(1) appears on its output only when the inputs have different logic states. ' OUipLIt

A 1 In a program, this operation is commonly used to compare two bytes. Subtraction may be used for the same purpose (if the resultis 0,
110 0[{0(1 e B :
bytes are equal). The advantage of this logic operation is that there is no danger to subtract larger number from smaller one.

B 0/1/1/0/1/ojojo|

i1 01/0/0jojo/1

Register

A register or a memory cell is an electronic circuit which can memorize the state of one byte.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 5/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Fig. 0-17 Register
Special Function Register
In addition to the registers which do not have any special and predetermined function, every microcontroller has a number of registers whose function is predetermined by the manufacturer.

Their bits are connected (literally) to internal circuits such as timers, A/D converter, oscillators and others, which means that they are directly in command of the operation of the
microcontroller. Imagine eight switches which are in command of some smaller circuits within the microcontroller- you are right! Special Function Registers (SFRs) do exactly that!

Fig. 0-18 Special Function Register

Input/Output Ports

In order to make the microcontroller useful, it has to be connected to additional electronics, i.e. peripherals. Each microcontroller has one or more registers (called a “port”’) connected to the
microcontroller pins. Why input/output? Because you can change the pin’s function as you wish. For example, suppose you want your device to turn three signal LEDs and simultaneously
monitor the logic state of five sensors or push buttons. Some of ports need to be configured so that there are three outputs (connected to the LEDs) and five inputs (connected to sensors). It
is simply performed by software, which means that the pin’s function can be changed during operation.

Ml'crocontroﬂer

Fig. 0-19 Input / Output ports

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 6/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

One of the more important specifications of input/output (I/O) pins is the maximum current they can handle. For most microcontrollers, current obtained from one pin is sufficient to activate an
LED or other similar low-current device (10-20 mA). If the microcontroller has many I/O pins, then the maximum current of one pin is lower. Simply put, you cannot expect all pins to give
maximum current if there are more than 80 of them on one microcontroller. Another way of putting it is that the maximum current stated in the data specifications sheet for the microprocessor
is shared across all /O ports.

Another important pin function is that it can have pull-up resistors. These resistors connect pins to the positive power supply voltage and their effect is visible when the pin is configured as
an input connected to mechanical switch or push button. Newer versions of microcontrollers have pull-up resistors configurable by software.

Usually, each I/O portis under control of another SFR, which means that each bit of that register determines the state of the corresponding microcontroller pin. For example, by writing logic
one (1) to one bit of that control register SFR, the appropriate port pin is automatically configured as input. It means that voltage brought to that pin can be read as logic 0 or 1. Otherwise, by
writing zero to the SFR, the appropriate port pin is configured as an output. Its voltage (0V or 5V) corresponds to the state of the appropriate bit of the port register.

Memory Unit

Memory is part of the microcontroller used for data storage. The easiest way to explain itis to compare it with a filing cabinet with many drawers. Suppose, the drawers are clearly marked so
that it is easy to access any of them. Itis easy enough to find out the contents of the drawer by reading the label on the front of the drawer.

Each memory address corresponds to one memory location. The content of any location becomes known by its addressing.
Memory can either be written to or read from. There are several types of memory within the microcontroller.

Write/Read

Read Only Memory (ROM)

ROM (Read Only Memory) is used to permanently save the program being executed. The size of a program that can be written depends on the size of this memory. Today’s microcontrollers
commonly use 16-bit addressing, which means that they are able to address up to 64 Kb of memory, i.e. 65535 locations. As a novice, your program will rarely exceed the limit of several
hundred instructions. There are several types of ROM.

Masked ROM. Microcontrollers containing this ROM are reserved for the great manufacturers. Program is loaded into the chip by the manufacturer. In case of large scale manufacture, the
price is very low. Forgetit...

One Time Programmable ROM (OTP ROM). If the microcontroller contains this memory, you can download a program into this memory, but the process of program downloading is a “one-
way ticket’, meaning that it can be done only once. If an error is detected after downloading, the only thing you can do is to download the corrected program to another chip.

UV Erasable Programmable ROM (UV EPROM). Both the manufacturing process and characteristics of this memory are completely identical to OTP
ROM. However, the package of this microcontroller has a recognizable “window” on the upper side. It enables the surface of the silicon chip inside to be
litby an UV lamp, which effectively erases and program from the ROM.

Installation of this window is very complicated, which normally affects the price. From our point of view, unfortunately- negative...

Flash memory. This type of memory was invented in the 80s in the laboratories of INTEL and were represented as the successor to the UV EPROM. Since the contents of this memory can
be written and cleared practically an unlimited number of times, the microcontrollers with Flash ROM are ideal for learning, experimentation and small-scale manufacture. Because of its
popularity, the most microcontrollers are manufactured in flash versions today. So, if you are going to buy a microcontroller, the type to look for is definitely Flash!

Random Access Memory (RAM)

Once the power supply is off the contents of RAM (Random Access Memory) is cleared. It is used for temporary storing data and intermediate results created and used during the operation
of the microcontroller. For example, if the program performs an addition (of whatever), it is necessary to have a register representing what in everyday life is called the “sum”. For that
purpose, one of the registers in RAM is called the “sum” and used for storing results of addition.

Electrically Erasable Programmable ROM (EEPROM)

The contents of the EEPROM may be changed during operation (similar to RAM), but remains permanently saved even upon the power supply goes off (similar to ROM). Accordingly, an
EEPROM is often used to store values, created during operation, which must be permanently saved. For example, if you design an electronic lock or an alarm, it would be great to enable the
user to create and enter a password, but useless if itis lost every time the power supply goes off. The ideal solution is the microcontroller with an embedded EEPROM.

Interrupt

The most programs use interrupts in regular program execution. The purpose of the microcontroller is mainly to react on changes in its surrounding. In other words, when some event takes
place, the microcontroller does something... For example, when you push a button on a remote controller, the microcontroller will register it and respond to the order by changing a channel,
turn the volume up or down etc. If the microcontroller spent most of its time endlessly a few buttons for hours or days... It would not be practical.

The microcontroller has learnt during its evolution a trick. Instead of checking each pin or bit constantly, the microcontroller delegates the “wait issue” to the “specialist” which will react only
when something attention worthy happens.

The signal which informs the central processor about such an eventis called an INTERRUPT.
Central Processor Unit (CPU)
As its name suggests, this is a unit which monitors and controls all processes inside the microcontroller. It consists of several smaller subunits, of which the mostimportant are:

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 7/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

« Instruction Decoder is a part of the electronics which recognizes program instructions and runs other circuits on the basis of that. The “instruction set” which is
different for each microcontroller family expresses the abilities of this circuit.

¢ Arithmetical Logical Unit (ALU) performs all mathematical and logical operations upon data.

« Accumulator is a SFR closely related to the operation of the ALU. It is a kind of working desk used for storing all data upon which some operation should be
performed (addition, shift/move etc.). It also stores the results ready for use in further processing. One of the SFRs, called a Status Register (PSW), is closely
related to the accumulator. It shows at any given moment the “status” of a number stored in the accumulator (number is greater or less than zero etc.).

Control line

PSW register

Instruction
Accumulator Decoder

Fig. 0-22 Central Processor Unit - CPU

Bus

Physically, the bus consists of 8, 16 or more wires. There are two types of buses: the address bus and the data bus. The address bus consists of as many lines as necessary for memory
addressing. Itis used to transmit the address from the CPU to the memory. The data bus is as wide as the data, in our case itis 8 bits or wires wide. Itis used to connect all circuits inside the
microcontroller.

Serial Communication

Parallel connections between the microcontroller and peripherals via input/output ports is the ideal solution for shorter distances- up to several meters. However, in other cases - when itis
necessary to establish communication between two devices on longer distances itis not possible to use a parallel connection - such a simple solution is out of question. In these situations,
serial communication is the best solution.

Today, most microcontrollers have built in several different systems for serial communication as a standard equipment. Which of these systems will be used depends on many factors of
which the most important are:

« How many devices the microcontroller has to exchange data with?
* How fast the data exchange has to be?

¢ What is the distance between devices?

¢ Is it necessary to send and receive data simultaneously?

One of the most important things concerning serial communication is the Protocol which

Fig. 0-23 Serial communication

should be strictly observed. Itis a set of rules which must be applied in order that the devices can correctly interpret data they mutually exchange. Fortunately, the microcontrollers
automatically take care of this, so the work of the programmer/user is reduced to simple write (data to be sent) and read (received data).

Baud Rate
The term Baud rate is commonly used to denote the number of bits transferred per second [bps].

It should be noted that it refers to bits, not bytes! It is usually required by the protocol that each byte is transferred along with several control bits. It means that one byte in serial data stream
may consist of 11 bits. For example, if the baud rate is 300 bps then maximum 37 and minimum 27 bytes may be transferred per second, which depends on type of connection and protocol
in use.

The most commonly used serial communication systems are:

12C (Inter Integrated Circuit) is a system used when the distance between the microcontrollers is short and specialized integrated circuits of of a new generation (receiver and transmitter are
usually on the same printed circuit board). Connection is established via two conductors- one is used for data transfer whereas another is used for synchronization (clock signal). As seen in
figure, one device is always the master. It performs addressing of one slave chip (subordinated) before communication starts. In this way one microcontroller can communicate with 112
different devices. Baud rate is usually 100 Kb/sec (standard mode) or 10 Kb/sec (slow baud rate mode). Systems with the baud rate of 3.4 Mb/sec have recently appeared. The distance
between devices which communicate via an inter-integrated circuit bus is limited to several meters.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 8/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

SPI (Serial Peripheral Interface Bus) is a system for serial communication which uses up to four conductors (usually
three)- one for data receiving, one for data sending, one for synchronization and one (alternatively) for selecting the
device to communicate with. Itis full duplex connection, which means that data is sent and received simultaneously.
The maximum baud rate is higher than in 12C connection.

UART (Universal Asynchronous Receiver/Transmitter)

This connection is asynchronous, which means that a special line for clock signal transmission is not used. In some situations this feature is crucial (for example, radio connection or infrared
waves remote control). Since only one communication line is used, both receiver and transmitter operate at the same predefined rate in order to maintain necessary synchronization. This is
a very simple way of transferring data since it basically represents conversion of 8-bit data from parallel to serial format. Baud rate is not high up to 1 Mbit/sec.

Oscillator

Even pulses coming from the oscillator enable harmonic and synchronous operation of all circuits of the
microcontroller. The oscillator module is usually configured to use quartz crystal or ceramic resonator for frequency
stabilization. Furthermore, it can also operate without elements for frequency stabilization (like RC oscillator). It is
important to say that instructions are not executed at the rate imposed by the oscillator itself, but several times
slower. It happens because each instruction is executed in several steps. In some microcontrollers, the same
number of cycles is needed to execute any instruction, while in others, the execution time is not the same for all
instructions. Accordingly, if the system uses quartz crystal with a frequency of 20 Mhz, execution time of an
instruction is not 50nS, but 200, 400 or 800 nS, depending on the type of Microcontroller Unit (MCU)!

Power supply circuit
There are two things worth attention concerning the microcontroller power supply circuit:

Brown-out is a potentially dangerous state which occurs at the moment the microcontroller is being turned off or in situations when power supply voltage drops to the limit due to electric
noise. As the microcontroller consists of several circuits which have different operating voltage levels, this state can cause its out-of-control performance. In order to prevent it, the
microcontroller usually has built-in circuit for brown out reset. This circuitimmediately resets the whole electronics when the voltage level drops below the limit.

Reset pin is usually marked as MCLR (Master Clear Reset) and serves for external reset of the microcontroller by applying logic zero (0) or one (1), depending on type of the
microcontroller. In case the brown out circuit is not builtin, a simple external circuit for brown out reset can be connected to this pin.

Timers/Counters

The microcontroller oscillator uses quartz crystal for its operation. Even though it is not the simplest solution, there are many reasons to use it. Namely, the frequency of such oscillator is
precisely defined and very stable, the pulses it generates are always of the

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 9/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Fig. 0-27 Timers/Counters

same width, which makes them ideal for time measurement. Such oscillators are used in quartz watches. If itis necessary to measure time between two events, it is sufficient to count pulses
coming from this oscillator. That is exactly what the timer does.

Most programs use these miniature electronic “stopwatches”. These are commonly 8- or 16-bit SFRs and their content is automatically incremented by each coming pulse. Once a register is
completely loaded - an interrupt is generated!

If the timer registers use an internal quartz oscillator for their operation then itis possible to measure time between two events (if the register value is T1 at the moment measurement has
started, and T2 at the moment it has finished, then the elapsed time is equal to the result of subtraction T2-T1). If the registers use pulses coming from external source then such a timeris
turned into a counter.

This is only a simple explanation of the operation itself.

How does a timer operate?

In practice pulses coming from the quartz oscillator are once per each machine cycle directly or via a prescaler brought to the circuit which increments the number in the timer register. If one
instruction (one machine cycle) lasts for four quartz oscillator periods then, by embedding quartz with the frequency of 4MHz, this number will be changed a million times per second (each
microsecond).

Timer register

4MHz 1MHz L Stal‘tﬁ m i g StOp
OSC.— Y ! —————— |\ umber B} B[|

+1, +1, +1...
s

A 4

Elapsed time = B-A [uS]

Fig. 0-28 Timer Operation

Itis easy to measure short time intervals (up to 256 microseconds) in the way described above because itis the largest number that one register can contain. This obvious disadvantage
may be easily overcome in several ways by using a slower oscillator, registers with more bits, a prescaler or interrupts. The first two solutions have some weaknesses so it is preferable to
use prescalers or interupts.

Using prescaler in timer operating

A prescaler is an electronic device used to reduce a frequency by a pre-determined factor. Meaning that in order to generate one pulse on its output, itis necessary to bring 1,2 , 4 or more
pulses to its input. One such circuitis built in the microcontroller and its division rate can be changed from within the program. Itis used when itis necessary to measure longer periods of
time.

One prescaler is usually shared by timer and watch-dog timer, which means that it cannot be used by both of them simultaneously.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 10/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
Timer register

AMHz 1MHz 1IN Start A @ 2& Stop
osc — 1, +— Prescaler > !I!Jl FRrmmnanens o

+1, +1, +1...
SF O omm

lapsed time = N x (B-A) [uS

Fig. 0-29 Using prescaler in timer operating

Using the interrupt in timer operation

If the timer register consists of 8 bits, the largest number that can be written to itis 255 (for 16-bit registers it is the number 65.535). If this number is exceeded, the timer will be automatically
reset and counting will start from zero again. This condition is called overflow. If enabled from within the program, such overflow can cause an interrupt, which gives completely new
possibilities. For example, the state of registers used for counting seconds, minutes or days can be changed in an interrupt routine. The whole process (except interrupt routine) is
automatically performed “in the background”, which enables the main circuits of the microcontroller to perform other operations.

Timer register

+1, +1, +1...

OSC.~ % — Prescaler— IIMIZRAN -----2--imoieee E
HoH Interrupt

Additional register

@4 Stop @
!M . P E G IR P

m N x (256C+B-A) [uS]

Fig. 0-30 Using the interrupt in timer operation

AMHz 1MHz 1IN Start # @4 Stop ;‘ﬁy;

This figure illustrates the use of the interruptin timer operation. Delays of arbitrary duration with minimal interference by the main program execution can be easily obtained by assigning a
prescaler to the timer.

Counters

If a timer is supplying pulses into the microcontroller input pin then it turns into a counter. Clearly, Itis the same electronic circuit. The only difference is that in this case pulses to be counted
come through the ports and their duration (width) is mostly not defined. This is why they cannot be used for time measurement, but can be used to measure anything else: products on an
assembly line, number of axis rotation, passengers etc. (depending on sensor in use).

Watchdog Timer
The Watchdog Timer is a timer connected to a completely separate RC oscillator within the microcontroller.

If the watchdog timer is enabled, every time it counts up to the program end, the microcontroller reset occurs and program execution starts from the first instruction. The pointis to prevent this
from happening by using a specific command. The whole idea is based on the fact that every program is executed in several longer or shorter loops.

If instructions which reset the watchdog timer are set at the appropriate program locations, besides commands being regularly executed, then the operation of the watchdog timer will not
affect program execution. If for any reason (usually electrical noises in industry), the program counter “gets stuck” on some memory location from which there is no return, the watchdog will
not be cleared and the register’s value being constantly incremented will reach the maximum et voila! Reset occurs!

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 11/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Program

Instruction CLRWDT _'!'

Instruction CLRWDT

Fig. 0-31 Watchdog Timer

A/D Converter

External signals are usually fundamentally different from those the microcontroller understands (Ones and Zeros), so that they have to be converted in order for the microcontroller to
understand them. An analogue to digital converter is an electronic circuit which converts continuous signals to discrete digital numbers. This module is therefore used to convert some
analogue value into binary number and forwards it to the CPU for further processing. In other words, this module is used for input pin voltage measurement (analogue value). The result of
measurement is a number (digital value) used and processed later in the program.

Fig. 0-32 A/D Converter

Internal Architecture

All upgraded microcontrollers use one of two basic design models called Harvard and von-Neumann architecture.
Briefly, they are two different ways of data exchange between CPU and memory.

von-Neumann Architecture

Microcontrollers using this architecture have only one memory block and one 8-bit data bus. As all data are exchanged by using these 8 lines, this bus is
overloaded and communication itself is very slow and inefficient. The CPU can either read an instruction or read/write data from/to the memory. Both
cannot occur at the same time since the instructions and data use the same bus system. For example, if some program line says that RAM memory
register called “SUM” should be incremented by one (instruction: incf SUM), the microcontroller will do the following:

1. Read the part of the program instruction specifying WHAT should be done (in this very case it is the “incf” instruction for increment).
2. Read further the same instruction specifying upon WHICH data it should be performed (in this very case it is the “SUM” register).
3. After being incremented, the contents of this register should be written to the register from which it was read (“SUM” register address).

The same data bus is used for all these intermediate operations.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 12/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Harvard Architecture

Microcontrollers using this architecture have two different data buses. One is 8 bits wide and connects CPU to RAM. x8 x12 {1 4, 16)
Another consists of several lines (12, 14 or 16) and connects CPU to ROM. Accordingly, the CPU can read an

instruction and perform a data memory access at the same time. Since all RAM memory registers are 8 bits wide, all

data within the microcontroller are exchanged in the same such format. Additionally, during program writing, only 8

bits data are considered. In other words, all you can ever change from within the program and all you can affect will RAM
be 8 bits wide. A program written for some of these microcontrollers will be stored in the microcontroller internal

ROM upon having being compiled into machine language. However, these memory locations do not have 8, but 12, RO M

14 or 16 bits. The rest of bits- 4, 6 or 8- represents the instruction itself specifying to the CPU what to do with the 8- (prog ram)
bit data.

The advantages of such design are the following:

« All data in a program is one byte (8 bit) wide. As the data bus used for program reading has several lines (12, 14 or 16), both instructions and data can be read
simultaneously by using these spare bits. Therefore, all instructions are executed in only one instruction cycle. The only exception is jump instruction which is
executed in two cycles.

« Owing to the fact that a program (ROM) and temporary data (RAM) are separate, the CPU can execute two instructions simultaneously. Simply, while RAM read
or write is in progress (the end of one instruction), the next program instruction is being read via another bus.

« When using microcontrollers with von-Neumann architecture one never knows how much memory is to be occupied by some program. Basically, each program
instruction occupies two memory locations (one contains information on WHAT should be done, whereas another contains information upon WHICH data it
should be done). However, it is not a hard and fast rule, but the most common case. In microcontrollers with Harvard architecture, the program bus is wider than
one byte, which allows each program word to consist of instruction and data. In other words: one program word- one instruction.

INSTRUCTION SET

Instructions that can be understood by the microcontroller are known as an instruction set. When you write a program in assembly language, you actually “tell a S i
story” by specifying instructions in the order they should be executed. The main restriction in this process is the number of available instructions. The e e,

. . o moviw Ox3F
manufacturers stick to one of the two following strategies: Vet TEMBL
btfac MAK3, T
goto check
btfse MAX3. 6
goto opening
brfsc MAX3,5
gote clasing

RISC (Reduced Instruction Set Computer)

In this case, the microcontroller recognizes and executes only basic operations (addition, subtraction, copying etc.). All other more complicated operations are performed by combining these
(for example, multiplication is performed by performing successive addition). The constrains are obvious (iry by using only a few words, to explain to someone how to reach the airportin
some other city). However, there are also some great advantages. First of all, this language is easy to learn. Besides, the microcontroller is very fast so that it is not possible to see all the
arithmetic “acrobatics” it performs. The user can only see the final result of all those operations. At last, it is not so difficult to explain where the airportis if you use the right words. For
example: left, right, kilometers etc.

CISC (Complex Instruction Set Computer)

CISC is the opposite of RISC! Microcontrollers designed to recognize more than 200 different instructions can do much and are very fast. However, one needs to understand how to take all
that such a rich language offers, which is not at all easy...

How to make the right choice

Ok, you are the beginner and you have made a decision to go on an adventure of working with the microcontrollers. Congratulations on your choice! However, itis not as easy to choose the
right microcontroller as it may seem. The problem is not a limited range of devices, but the opposite!

Before you start designing some device based on the microcontroller, think of the following: how many input/output lines will | need for operation? Should it perform some other operations
than to simply turn relays on/off? Does it need some specialized module such as serial communication, A/D converter etc. When you create a clear picture of what you need, the selection
range is considerably reduced, then itis time to think of price. Is your plan to have several same devices? Several hundred? A million? Anyway, you get the point...

If you think of all these things for the very first time then everything seems a bit confusing. For that reason, go step by step. First of all, select the manufacturer, i.e. the family of the
microcontrollers you can easily obtain. After that, study one particular model. Learn as much as you need, do not go into details. Solve a specific problem and something incredible will
happen- you will be able to handle any model belonging to that family.

Remember learning to ride a bicycle: after several unavoidable bruises at the beginning, you will manage to keep balance and will be able to easily ride any other bicycle. And of course,
you will never forget the skill in programming just as you will never forget riding bicycles!

PIC microcontrollers
PIC microcontrollers designed by Microchip Technology are likely the right choice for you if you are the beginner. Here is why...

The real name of this microcontroller is PICmicro (Peripheral Interface Controller), butitis better known as PIC. [ts first ancestor was designed in 1975 by General Instruments. This chip
called PIC1650 was meant for totally different purposes. About ten years later, by adding EEPROM memory, this circuit was transformed into a real PIC microcontroller. Nowadays, Microchip
Technology announces a manufacturing of the 5 billionth sample...

In order that you can better understand the reasons for its popularity, we will briefly describe several important things.

Clock Resolution of -
Family [Klz(y)t':s] [Ifyl::s] Pins [Fl\:l‘f-ltl.] Irl|\p/l?ts coﬁ\{e?-ter C(;r‘:ﬁ:r- slT?:‘;r:'t Serial Comm. O:’:;:Its Others
Base-Line 8 - bit architecture, 12-bit Instruction Word Length
PIC10FXXX 0.375 - 0.75 16 - 24 6-8 4-8 0-2 8 0-1 1x8 - - -
PIC12FXXX 0.75-1.5 25 - 38 8 4-8 0-3 8 0-1 1x8 - - EEPROM
PIC16FXXX 0.75-3 25 -134 14 - 44 20 0-3 8 0-2 1x8 - - EEPROM

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 13/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

PIC16HVXXX 1.5 25 18 - 20 20 - - - 1x8 - - vdd = 15V
Mid-Range 8 - bit architecture, 14-bit Instruction World Length

1-2x81

PIC12FXXX 1.75-3.5 | 64-128 8 20 0-4 10 1 2 - 0-1 EEPROM
PIC12HVXXX 1.75 64 8 20 0-4 10 1 L 'lex68 1 - 0-1 -
PIC16FXXX 1.75 - 14 64-368 | 14-64 20 0-13 8 or 10 0-2 1 '31"68 1 USART 12C SPI 0-3 -
PIC16HVXXX 1.75-35 | 64-128 | 14-20 20 0-12 10 2 2x81x 16| USARTI2C SPI - -

High-End 8 - bit architecture, 16-bit Instruction Word Length

0-2x82- USB2.0 CAN2.0

PIC18FXXX 4-128 256 - 3936 18 - 80 32-48 4-16 10 or 12 0-3 3% 16 USART 12C SPT 0-5 -
USB2.0 USART
PIC18FXXIXX 8 - 128 1024 - 28 -100 = 40 - 48 10 - 16 10 2 0-2x82- Ethernet 12C 2-5 -
3936 3x 16 op1
PIC18FXXKXX 8 - 64 768 - 3936 28 - 44 64 10 - 13 10 2 1x83x 16 USART I2C SPI 2 -

All PIC microcontrollers use harvard architecture, which means that their program memory is connected to CPU via more than 8 lines. Depending on the bus width, there are 12-, 14- and
16-bit microcontrollers. The table above shows the main features of these three categories.

As seen in the table on the previous page, excepting “16-bit monsters”- PIC 24FXXX and PIC 24HXXX- all PIC microcontrollers have 8-bit harvard architecture and belong to one out of three
large groups. Therefore, depending on the size of a program word there are first, second and third category, i.e. 12-, 14- or 16-bit microcontrollers. Having similar 8- bit core, all of them use
the same instruction set and the basic hardware ‘skeleton’ connected to more or less peripheral units.

In order to avoid tedious explanations and endless story about the useful features of different microcontrollers, this book describes the operation of one particular model belonging to “high
middle class”. It is about PIC16F887- powerful enough to be worth attention and simple enough to be easily presented to everybody.

table of contents | next chapter —

Book: PIC Microcontrollers
TOC Introduction Ch. 1 Ch.2 Ch.3 Ch4. Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 App.A App.B App.C
Chapter 1: PIC16F887 Microcontroller - Device Overview

The PIC16F887 is one of the latest products from Microchip. It features all the components which modern microcontrollers normally have. For its low price, wide range of application, high
quality and easy availability, itis an ideal solution in applications such as: the control of different processes in industry, machine control devices, measurement of different values etc. Some
of its main features are listed below.

« RISC architecture * 256 bytes EEPROM memory
o Only 35 instructions to learn o Data can be written more than
o All single-cycle instructions except 1.000.000 times
branches « 368 bytes RAM memory

« Operating frequency 0-20 MHz « A/D converter:

« Precision internal oscillator o 14-channels
o Factory calibrated o 10-bit resolution
o Software selectable frequency « 3independent timers/counters
range of 8MHz to 31KHz * Watch-dog timer

¢ Analogue comparator module with
o Two analogue comparators
o Fixed voltage reference (0.6V)
o Programmable on-chip voltage
reference

« Power supply voltage 2.0-5.5V
o Consumption: 220uA (2.0V, 4MHz),
11uA (2.0 V, 32 KHz) 50nA (stand-
by mode)

« Power-Saving Sleep Mode

« Brown-out Reset (BOR) with software control + PWM output steering control

+ Enhanced USART module

option
« 35 input/output pins o Supports RS-485, RS-232 and
o High current source/sink for direct LIN2.0
LED drive o Auto-Baud Detect
o software and individually « Master Synchronous Serial Port (MSSP)
programmable pull-up resistor o supports SPI and I2C mode

o Interrupt-on-Change pin
+« 8K ROM memory in FLASH technology
o Chip can be reprogrammed up to
100.000 times
¢ In-Circuit Serial Programming Option
o Chip can be programmed even
embedded in the target device

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 14/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

REIMGLRNpp RETICSPOAT
RAOTANO/ULPWLIC12IND- RBEICSPCLK
RATIANA/C12IN1- RESIANIITIG
RAZIANZVref-(CVrefiC2IN+ REAIAN1T
RANANINVref+C 1IN+ RE3ANSPGMCH2IN-
RAATOCKUCIOUT REZIANS
RASIAN4/SEIC20UT REB1AN1DICIZING-
REO/ANS REOIAN1ZINT
RE1/ANG vdd
REZIANT Vs
vdd RD7IP1D
Vs RDEIPIC
RATIOSCA/CLKIN RDSIP1B
RAGIOSC2/CLKOUT RD4
RCOT10SOTICK RCTIRX/DT
RC1/TIOSUCCP2 ROETAICK
RC2IPIAICCP RCE/SDO
REISCKISEL RCA/SDISDA
RDO RD3
RDA RD2

Fig. 1-1 PIC16F887 PDIP 40 Microcontroller

RC4SDISDA
RCZP1A/CCP1
RCUTIOSICCPZ

RD3
RD2
RO
RoO

§

(O RCS5D0

RCT/RX/IDT

NG
RD4 RCNTIOSOMICKI
RDSP1B RABOSCHCLKOUT
ROBPIC RATIOSCHCLKIN
ROTIPID Ves
Ves Vidd
Vdd REZ'ANT
RENAN1ZANT RE1/ANG
RE1/ANTO0IC12IN3- REDMANS
RB2IANE RASIAN&ISSICIOUT
REJANS/PGMIC12IN2- RAMTOCKICTIOUT

ikililillittikilili
§502|§ug§z
S

P

Fig. 1-2 PIC16F887 QFN 44 Microcontroller

Oscillator | TO T1 T2 i ~ RAM
0 - 20MHz | SFR (368)

Internal
Oscillator

Program

CPU | Memory 8K

(35 instructions)

Converter

_ EEPROM (256)
Vref _ Interrupts WDT

S

| > N . | Power Supply,
PortD ! PortE D o5 @

Fig. 1-3 PIC16F887 Block Diagram

Pin Description
As seen in Fig. 1-1 above, the most pins are multi-functional. For example, designator RA3/AN3/Vref+/C1IN+ for the fifth pin specifies the following functions:

« RAS3 Port A third digital input/output

¢ ANS3 Third analog input

« Vref+ Positive voltage reference

e C1IN+ Comparator C1positive input
This small trick is often used because it makes the microcontroller package more compact without affecting its functionality. These various pin functions cannot be used simultaneously, but
can be changed at any point during operation.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 15/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

The following tables, refer to the PDIP 40 microcontroller.

Number

RE3/MCLR/NVpp

RAO/ANO/ULPWUIC12INO-

RA1/AN1/C12IN1-

RA2/AN2/\ref-ICVref(C2IN+

RA3/AN3/Vref+/C1IN+

RA4/TOCKI/C10UT

RAS/AN4/SS/C20UT

REO/ANS
RE1/ANG

RE2/ANY

Vdd
Vss

1 MCLR

Vpp

RAO

ANO
ULPWU
C12INO-

RA1

3 AN1
C12IN1-

RA2

AN2

Vref-

CVref

C2IN+
RA3
AN3
Vref+
C1IN+
RA4
6 TOCKI
c10UT
RAS
AN4
S8
czouT
REO
ANS
RE1
ANGB
RE2
AN7

10

EE! +

12 -

General purpose input Port E

Reset pin. Low logic level on this pin
resets microcontroller.

Programming voltage

General purpose /O port A

A/D Channel 0 input

Stand-by mode deactivation input
Comparator C1 or C2 negative input
General purpose I/O port A

A/D Channel 1

Comparator C1 or C2 negative input
General purpose /O port A

A/D Channel 2

A/D Negative Voltage Reference
input

Comparator Voltage Reference
Qutput

Comparator C2 Positive Input
General purpose l/O port A

A/D Channel 3

A/D Positive Voltage Reference Input
Comparator C1 Positive Input
General purpose l/O port A

Timer TO Clock Input

Comparator C1 Output

General purpose /O port A

A/D Channel 4

SPI module Input (Slave Select)
Comparator C2 Output

General purpose I/O port E

A/D Channel 5

General purpose I/O port E

A/D Channel 6

General purpose I/O port E

A/D Channel 7

Positive supply

Ground (GND)

Table 1-1 Pin Assignment

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

16/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Number

RAT/IOSC1/CLKIN

RAB/0OSC2/CLKOUT

RCO/T10SOIT1CKI

RC1/T108S0O/T1CKI

RC2/P1A/CCP1

RC3/SCK/SCL
RDO
RDA1
RD2
RD3

RC4/SDI/SDA

RC5/SDO

RCB/TX/CK

RC7/RX/DT

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

13

14

17

18
19
20
21
22

23

24

25

26

OSC‘l
CLKIN
08C2
CLKO
RAGB
RCO
T10S0
T1CKI
RC1
T108SI
CCP2
RC2
P1A
CCP1
RC3
SCK
SCL
RDO
RD1
RD2
RD3
RC4
SDI
SDA
RC5
SDO
RC6
X
CK
RC7
RX
DT

General purpose I/O port A
Crystal Oscillator Input
External Clock Input

| Crystal Oscillator Output

| Fosc/4 Output

| General purpose /O port A
| General purpose /O port C
| Timer T1 Oscillator Output
| Timer T1 Clock Input

| General purpose I/O port C

Timer T1 Oscillator Input

CCP1 and PWM1 module I/O
General purpose I/O port C

PWM Module Output

CCP1 and PWM1 module I/O
General purpose I/O port C

MSSP module Clock I/O in SPI mode
MSSP module Clock I/0 in I°C mode
General purpose I/O port D

General purpose I/O port D

General purpose I/O port D

General purpose I/O port D

General purpose I/O port A

MSSP module Data input in SPI mode
MSSP module Data I/O in I°C mode
General purpose I/O port C

MSSP module Data output in SP1 mode
General purpose I/O port C

USART Asynchronous Output
USART Synchronous Clock

General purpose I/O port C

USART Asynchronous Input

USART Synchronous Data

Table 1-1 cont. Pin Assignment

17/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Bumbat Description
DIP 40 P

General purpose /O port D
RD_5 General purpose I/O port D

RD5/P1B 28
P1B PWM Output
RD6 General purpose /O port D
RD6/P1C 29
P1C PWM Output
RD7/P1D 30 RD7 General purpose /O port D
P1D PWM Output
Vss 31 [- Ground (GND)
Vdd 32 * Positive Supply
RBO General purpose /O port B
RBO/AN1Z2/INT 33 AN12 A/D Channel 12

INT External Interrupt
RB1 General purpose /O port B
RB1/AN10/C12INT3- 34 AN10 A/D Channel 10
C12INT3- Comparator C1 or C2 Negative Input
RB2 General purpose |/O port B
ANS8 A/D Channel 8
RB3 General purpose /O port B
AN9 A/D Channel 9
PGM Programming enable pin
C12IN2- Comparator C1 or C2 Negative Input
RB4 General purpose l/O port B
AN11 A/D Channel 11
RB5 General purpose /O port B
RB5/AN13/T1G 38 AN13 A/D Channel 13
T1G Timer T1 External Input
RB6 General purpose /O port B
ICSPCLK Serial programming Clock
RB7 General purpose /O port B
ICSPDAT Programming enable pin

RB2/ANS 35

RB3/AN9/PGM/C12IN2- 36

RB4/AN11 37

RB6/ICSPCLK 39

RB7/ICSPDAT 40

Table 1-1 cont. Pin Assignment

Central Processor Unit (CPU)

I’'m not going to bore you with the operation of the CPU at this stage, however itis important to state that the CPU is manufactured with in RISC technology an important factor when deciding
which microprocessor to use.

RISC Reduced Instruction Set Computer, gives the PIC16F887 two great advantages:

* The CPU can recognizes only 35 simple instructions (In order to program some other microcontrollers it is necessary to know more than 200 instructions by
heart).

« The execution time is the same for all instructions except two and lasts 4 clock cycles (oscillator frequency is stabilized by a quartz crystal). The Jump and
Branch instructions execution time is 2 clock cycles. It means that if the microcontroller's operating speed is 20MHz, execution time of each instruc tion will be
200nS, i.e. the program will be executed at the speed of 5 million instructions per second!

Temporary Data

(eHarE) ROM memory

Oscillator, timers, counters...

Fig. 1-4 CPU Memory

Memory

This microcontroller has three types of memory- ROM, RAM and EEPROM. All of them will be separately discussed since each has specific functions, features and organization.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 18/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

ROM Memory

ROM memory is used to permanently save the program being executed. This is why itis often called “program memory”. The PIC16F887 has 8Kb of ROM (in total of 8192 locations). Since
this ROM is made with FLASH technology, its contents can be changed by providing a special programming voltage (13V).

Anyway, there is no need to explain itin detail because it is automatically performed by means of a special program on the PC and a simple electronic device called the Programmer.

Writing program
in assembly language,
(simulator tool), Copy program
compiling to to ROM Memory

machine code

Fig. 1-5 ROM Memory Consept

EEPROM Memory

Similar to program memory, the contents of EEPROM is permanently saved, even the power goes off. However, unlike ROM, the contents of the EEPROM can be changed during operation
of the microcontroller. That is why this memory (256 locations) is a perfect one for permanently saving results created and used during the operation.

RAM Memory
This is the third and the most complex part of microcontroller memory. In this case, it consists of two parts: general-purpose registers and special-function registers (SFR).

Even though both groups of registers are cleared when power goes off and even though they are manufactured in the same way and act in the similar way, their functions do not have many
things in common.

Ty

Fig. 1-6 SFR and General Purpose Registers

General-Purpose Registers

General-Purpose registers are used for storing temporary data and results created during operation. For example, if the program performs a counting (for example, counting products on the
assembly line), itis necessary to have a register which stands for what we in everyday life call “sum”. Since the microcontroller is not creative atall, itis necessary to specify the address of
some general purpose register and assign it a new function. A simple program to increment the value of this register by 1, after each product passes through a sensor, should be created.

Therefore, the microcontroller can execute that program because it now knows what and where the sum which must be incremented is. Similarly to this simple example, each program
variable must be preassigned some of general-purpose register.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 19/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
SFR Registers

Special-Function registers are also RAM memory locations, but unlike general-purpose registers, their purpose is predetermined during manufacturing process and cannot be changed.
Since their bits are physically connected to particular circuits on the chip (A/D converter, serial communication module, etc.), any change of their contents directly affects the operation of the
microcontroller or some of its circuits. For example, by changing the TRISA register, the function of each port A pin can be changed in a way it acts as input or output. Another feature of these
memory locations is that they have their names (registers and their bits), which considerably facilitates program writing. Since high-level programming language can use the list of all
registers with their exact addresses, it is enough to specify the register’'s name in order to read or change its contents.

RAM Memory Banks

The data memory is partitioned into four banks. Prior to accessing some register during program writing (in order to read or change its contents), itis necessary to select the bank which
contains that register. Two bits of the STATUS register are used for bank selecting, which will be discussed later. In order to facilitate operation, the most commonly used SFRs have the
same address in all banks which enables them to be easily accessed.

Addr. Name Addr. Name Addr. Name Addr. Name
00h INDF 80h INDF 100h INDF 180h INDF |
01h TMRO 81h OPTION_REG 101h TMRO 181h |OPTION_REG
02h PCL 82h PCL 102h PCL 182h PCL
03h STATUS 83h STATUS 103h STATUS 183h STATUS
04h FSR 84h FSR 104h FSR 184h FSR
05h PORTA 85h TRISA 105h WDTCON 185h SRCON |
06h PORTE 86h TRISB 106h PORTE 186h TRISB |
07h PORTC 87h TRISC 107h | CM1CONO 187h BAUDCTL
08h PORTD 88h TRISD 108h | CM2CONO 188h ANSEL
0Sh PORTE 89h TRISE 108h | CM2CON1 188h ANSELH
0AhR PCLATH 8Ah PCLATH 10Ah PCLATH 18Ah PCLATH
0Bh INTCON 8Bh INTCON 10Bh INTCON 18Bh INTCON |
0Ch PIR1 8Ch PIE1 10Ch EEDAT 18Ch EECON1 |
0Dh PIR2 8Dh PIEZ 10Dh EEADR 180h EECON2
0EhR TMRIL 8Eh FPCON 10Eh EEDATH 18Eh Mot Used
OFh TMR1H 8&Fh OSCCON 10Fh EEADRH 18Fh Not Used
10h T1CON 90h OSCTUNE 110h 190h
11h TMR2 91h SSPCONZ2
12h T2CON 92h PR2
13h SSPBUF 93h SSPADD
14h SSPCON 94h SSPSTAT
15h CCPR1L 95h WPUB
16h CCPR1H 96h 10CB
17h CCP1CON 97h VRCON
18h RCSTA 98h TXSTA
18h TXREG 98h SPBRG
1Ah RCREG 9Ah SPBRGH General General
1Bh CCPR2L 9Bh PWM1CON Purpose Purpose
1Ch CCPR2H 9Ch ECCPAS Registers Registers
1Dh CCP2CON 9Dh PSTRCON
1Eh | ADRESH 9Eh ADRESL 96 bytes 96 bytes
1Fh ADCONO 9Fh ADCON1
20h ADh
General General
Purpose Purpose
Registers Registers
7Fn | PObytes FFh sl L 17Fh 1EFh
Bank 0 Bank 1 Bank 2 Bank 3

Table 1-2 Address Banks

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 20/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

SFRs bank 0

Address | Name Bit7 Bit6 | Bit5 | Bit4 | Bit3 Bit2 Bit1 Bit0
0oh INDF Indirect register
01h TMRD | Timer TO Register
02h PCL Least Significant Byte of Program Counter
03h | STATUS | IRP RP1 RPO T0o | PD z oc | ¢
04h FSR Indirect Data Memary Address Pointer
0sh | PORTA RAT RAG RAS RA4 RAZ RA2 RA1 RAD
06h | PORTB | RET RB6 RB5 RB4 RE3 RB2 RE1 RBO
07h | PORTC | RC7 RC6 RC5 RC4 RC3 RC2 RC1 RCO
08h | PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RDO
0sh | PORTE . - . . RE3 RE2 RE1 REOQ
0Ah PCLATH - - - Upper 5 bits of Program Counter
DBh | INTCON | GIE PEIE TOIE INTE RBIE TOIF INTF RBIF
och PIR1 : ADIF RCIF TXIF SSPIF | CCPYF | TMR2IF | TMRIIF
0Dh PIR2 OSFIF | caF C1IF EEIF BCLIF | ULPWUIF . CCP2IF
0Eh TMR1L |Least Significant Byte of the 16-bit Timer TMRO
0Fh TMRITH | Most Significant Byte of the 16-hit Timer TMRO
10h | TICON | T1GINV | TMR1GE | TICKPS1 | TICKPSO | TIOSCEN | TISYNC | TMRICS | TMRION
11h TMR2 | Timer T2 Register
12h | T2CON - |ToutPs3| TOUTPS2 | TOUTPS1 | TOUTPSO | TMRZON |T2CKPS1 | T2CKPSO
13h SSPBUF | Synchronous Serial Port Receive BufferTransmit Register
14h | ssPcoN | wcoL | ssPov | SSPEN | ckP | SSPM3 | ssPM2 | ssPM1 | SSPMO
15h CCPRI1L |Capture/ComparePWM Register 1 Low Byle (LSB)
16h CCPR1H |Capture/ComparePWM Register 1 High Byle (LSB)
17h |[ccPicon| Pimi PIMO | Dc1B1 | DC1BO | ccPimMa | ccPimz | CCPIM1 | CCPIMO
i8h | RCSTA | SPEN RX9 SREN CREN | ADDEN | FERR | OERR | RX9D
19h TXREG |EUSART Transmit Data Register
1Ah | RCREG |EUSART Receive Data Register
1Bh CCPR2L |Capture/Compare PWM Register 1 Low Byte (LSB)
1Ch CCPRZH | Capture/Compare PWM Register 1 High Byte (LSB)
10h |ccr2CoN| - | - [DC2B1 | DC2BO | CCP2M3 | CCP2M2 | CCP2M1 | CCP2MO
1Eh ADRESH |A/D Result Register High Byte
1Fh | ADCOND | ADCS1 | ADCS0 | CHS3 | CHS2 | CHS1 | CHSO |GO/DONE| ADON

Table 1-3 SFR Bank 0

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

21/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
SFRs bank 1
Address| Name Btz | et | Bits | Bita | Bia | Bz | Bit1 | B0
80h INDF Indirect Register
81h |opTioN REG| rePu | INTEDG | Tocs | Tose | psa | Psz | ps1 | pPso
82h PCL Least Significant Byte of Program Counter
83h STATUS wme [R | rro | TO | o | z | Dc | c
84h FSR Indirect Data Memory Address Pointer
85h TRISA TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISAZ | TRISA1 | TRISAD
86h TRISB TRISB7 | TRISB6 | TRISBS | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISBO
87h TRISC TRISC7 | TRISCE | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISCO
88h TRISD TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISDO
89h TRISE - - - - TRISE3 | TRISEZ | TRISE1 | TRISEO
BAh PCLATH - - - Upper 5 bits of the Ptogram Counter
8Bh INTCON GIE PEIE TOIE INTE RBIE TOIF INTF RBIF
8Ch PIE1 - ADIE RCIE TXIE SSPIE | CCP1IE | TMRZIE | TMR1IE
8Dh PIE2 OSFIE C2IE C1E EEIE BCLIE |ULPWUIE - CCP2IE
BEh PCON - - ULPWUE | SBOREN - - POR BOR
8Fh OSCCON - IRCF2 IRCF1 IRCFO 0STS HTS LTS SCS
90n OSCTUNE - - - TUN4 TUN3 TUNZ TUNA1 TUNG
91h SSPCON2 GCEN |ACKSTAT | ACKDT | ACKEN | RCEN PEN RSEN SEN
92h PR2 Timer T2 Period Register
93h SSPADD Synchronous Serial Port (I* C mode) Address Register
93h SSPMSK MSKT MSK6 MSK5 MSK4 MSK3 MSK2 MSK1 MSKO
94n SSPSTAT SMP CKE DiA P 5 RAW UA BF
95h WPUB WPUB7 | WPUBG | WPUB5 | WPUB4 | WPUB3 | WPUBZ | WPUB1 | WPUBO
96h I0CB IOCB7 IOCB6 I0CB5 I0CB4 | |OCB3 | 10CB2 | I0CB1 | 10CBO
97h VRCON VREN VROE VRR VRSS VR3 VR2 VR1 VRO
98h TXSTA CSRC TX9 TXEN SYNC SENDB | BRGH | TRMT | Tx9D
99h SPBRG BRG7 BRG6 BRGS BRG4 BRG3 BRG2 BRG1 BRGO
9Ah SPBRGH BRG15 | BRG14 | BRG13 | BRG12 | BRG11 | BRG10 | BRGY® | BRGS
9Bh PWMICON | PRSEN PDCE PDC5 PDC4 PDC3 PDC2 PDC1 PDCO
9Ch ECCPAS | ECCPASE | ECCPAS2 | ECCPAS1 | ECCPASD | PSSACT | PSSACO |PSSBD1 | PSSBDO
9Dh PSTRCON = - 2 STRSYNC | STRD STRC STRE | STRA
9Eh ADRESL |A/D Result Register Low Byte
9Fh ADCON1 aDFM | - | wveFet | vereo | - | - | - | -
Table 1-4 SFR Bank 1
SFRs bank 2
Address | Name Bit7 | Bt6 | Bts | B | @@ Bit2 Bit1 Bit0
100h INDF Indirect register
101h TMRO Timer T Register
102h PCL Least Significant Byte of the Program Counter
103h | STATUS RF | RP1 | RPO o | e | z oc | ¢
104h FSR Indirect Data Memory Address Pointer
105h | WDTCON - - . WDTPS3 | WDTPS2 | WOTPS1 | WDTPSD | SWDTEN
106h | PORTB RE7 RE6 RBS RB4 | RB3 RB2 RB1 RBO
107h | CM1CONG | C10N c1ouT C10E cipoL | - C1R C1CH1 C1CHO
108h | CM2COND | C20N c20UT C20E czpoL | - C2R C2CH1 C2CHD
108h | CM2CONT | MC1OUT | MC20UT | GIRSEL | C2RSEL | - B TIGSS | C2SYNG |
10Ah PCLATH - - - Upper 5 bits of the Program Counter
10Bh | INTCON GIE PEIE TOIE INTE | RBIE TOIF INTF RBIF
10Ch | EEDAT | EEDAT7 | EEDAT6 | EEDATS | EEDAT4 | EEDAT3 | EEDAT2 | EEDAT1 | EEDATO
100h | EEADR | EEADR7 | EEADRE | EEADRS | EEADR4 | EEADR3 | EEADRZ | EEADR1 | EEADRO
10En | EEDATH EEDATHS | EEDATH4 | EEDATH3 | EEDATH2 | EEDATH1 | EEDATHO
10Fh | EEADRH E : EEADRH4 | EEADRH3 | EEADRH2 | EEADRH1 | EEADRHO
Table 1-5 SFR Bank 2
SFRs bank 3
Address Name Bit7 | Bits | Bts | Bit4 | Bita | B2 | Bt | B
180h INDF Indirect Register
181h | OPTION REG | RBPU |INTEDG | Tocs | Tose | psa | ps2 | pst | Pso
182h PCL Least Significan Byte of the Program Counter
183h STATUS me | rRpt [mRro | To [D | z [D | ¢
184h FSR Indirect Data Memory Address Pointer
185h SRCON SR1 SRO C1SEN | CZREN | PULSS | PULSR - FVREN
186h TRISB TRISB7 TRISB6 | TRISBS | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISBO
187h BAUDCTL ABDOVF | RCIDL - SCKP BRG16 - WUE ABDEN
188h ANSEL ANST ANSE ANSS5 ANS4 ANS3 ANS2 ANS1 ANSO
189h ANSELH - - ANS13 | ANS12Z | ANST ANS10 ANSS ANSE
19Ah PCLATH - - - Upper 5 bits of the Program Counter
19Bh INTCON GIE PEIE TOIE INTE RBIE TOIF INTF RBIF
19Ch EECON1 EEPGD - - - WRERR | WREN WR RD
19Dh EECONZ EEPROM Control Register 2

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

22/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Table 1-6 SFR Bank 3

STACK

A part of the RAM used for the stack consists of eight 13-bit registers. Before the microcontroller starts to execute a subroutine (caLL instruction) or when an interrupt occurs, the address of
first next instruction being currently executed is pushed onto the stack, i.e. onto one of its registers. In that way, upon subroutine or interrupt execution, the microcontroller knows from where
to continue regular program execution. This address is cleared upon return to the main program because there is no need to save itany longer, and one location of the stack is automatically
available for further use.

Itis important to understand that data is always circularly pushed onto the stack. It means that after the stack has been pushed eight times, the ninth push overwrites the value that was
stored with the first push. The tenth push overwrites the second push and so on. Data overwritten in this way is not recoverable. In addition, the programmer cannot access these registers for
write or read and there is no Status bit to indicate stack overflow or stack underflow conditions. For that reason, one should take special care of it during program writing.

Interrupt System

The first thing that the microcontroller does when an interrupt request arrives is to execute the current instruction and then stop regular program execution. Immediately after that, the current
program memory address is automatically pushed onto the stack and the default address (predefined by the manufacturer) is written to the program counter. That location from where the
program continues execution is called the interrupt vector. For the PIC16F887 microcontroller, this address is 0004h. As seen in Fig. 1-7 below, the location containing interrupt vector is
passed over during regular program execution.

Part of the program being activated when an interrupt request arrives is called the interrupt routine. Its first instruction is located at the interrupt vector. How long this subroutine will be and
what it will be like depends on the skills of the programmer as well as the interrupt source itself. Some microcontrollers have more interrupt vectors (every interrupt request has its vector), but
in this case there is only one. Consequently, the first part of the interrupt routine consists in interrupt source recognition.

Finally, when the interrupt source is recognized and interrupt routine is executed, the microcontroller reaches the ReTFIE instruction, pops the address from the stack and continues program

execution from where it left off.

Instructions Addresses Instructions Addresses

Instructions Addresses

00h

bl h

lInberrupt

P

Jum

- MR BNE

- N BA S NE

Fig.1-7 Interrupt System

How to use SFRs

You have bought the microcontroller and have a good idea how to use it...There is a long list of SFRs with all bits. Each of them controls some process. All in all, it looks like a big control
table with a lot of instruments and switches. Now you are concerned about whether you will manage to learn how to use them all? You will probably not, but don’t worry, you don’t have to!
Such powerful microcontrollers are similar to a supermarkets: they offer so many things at low prices and itis only up to you to choose. Therefore, select the field you are interested in and
study only what you need to know. Afterwards, when you completely understand hardware operation, study SFRs which are in control of it (there are usually a few of them). To reiterate,
during program writing and prior to changing some bits of these registers, do not forget to select the appropriate bank. This is why they are listed in the tables above.

« previous chapter | table of contents | next chapter —

Book: PIC Microcontrollers
TOC Introduction Ch.1 Ch.2 Ch.3 Ch4. Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 App. A App.B App.C
Chapter 2: Core SFRs

Features and Function
The special function registers can be classified into two categories:

« Core (CPU) registers - control and monitor operation and processes in the central processor. Even though there are only a few of them, the operation of the
whole microcontroller depends on their contents.
« Peripheral SFRs- control the operation of peripheral units (serial communication module, A/D converter etc.). Each of these registers is mainly specialized for one
circuit and for that reason they will be described along with the circuit they are in control of.
The core (CPU) registers of the PIC16F887 microcontroller are described in this chapter. Since their bits control several different circuits within the chip, it is not possible to classify them into
some special group. These bits are described along with the processes they control.

STATUS Register

Legend

RW Readable/Writable bit

R Readable bit only

(o) After reset, bit is cleared
(1 After reset, bit is set

=) After reset, bit is unknown

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 23/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
Fig. 2-1 STATUS Register
The STATUS register contains: the arithmetic status of the W register, the RESET status and the bank select bits for data memory. One should be careful when writing a value to this register
because if you do it wrong, the results may be different than expected. For example, if you try to clear all bits using the cLrr sTATUS instruction, the result in the register will be 000xx1xx

instead of the expected 00000000. Such errors occur because some of the bits of this register are set or cleared according to the hardware as well as because the bits 3 and 4 are readable

only. For these reasons, if it is required to change its content (for example, to change active bank), itis recommended to use only instructions which do not affect any Status bits (C, DC and
Z). Refer to “Instruction Set Summary”.

« IRP - Bit selects register bank. It is used for indirect addressing.
o 1-Banks 0 and 1 are active (memory location 00h-FFh)
o 0-Banks 2 and 3 are active (memory location 100h-1FFh)

« RP1,RPO0 - Bits select register bank. They are used for direct addressing.

RP1 RPO ACTIVE BANK
0 0 BankO
0 1 Bank1
1 0 Bank2
1 1 Bank3
Table 2-1

TO - Time-out bit.

o 1 - After power-on or after executing cLrwDT instruction which resets watch-dog timer or SLEEP instruction which
sets the microcontroller into low-consumption mode.

o 0 - After watch-dog timer time-out has occurred.

+ PD - Power-down bit.

o 1 - After power-on or after executing cLrRwDT instruction which resets watch-dog timer.
o 0 - After executing sLEeP instruction which sets the microcontroller into low-consumption mode.

Z - Zero bit
o 1 - The result of an arithmetic or logic operation is zero.
o 0 - The result of an arithmetic or logic operation is different from zero.

DC - Digit carry/borrow bit is changed during addition and subtraction if an “overflow” or a “borrow” of the result occurs.
o 1 - A carry-out from the 4th low-order bit of the result has occurred.
o 0 - No carry-out from the 4th low-order bit of the result has occurred.

C - Carry/Borrow bit is changed during addition and subtraction if an “overflow” or a “borrow” of the result occurs, i.e. if the result is greater than 255 or less than
0.

o 1 - A carry-out from the most significant bit of the result has occurred.
o 0 - No carry-out from the most significant bit of the result has occurred.

OPTION_REG Register

RW(1) RW(1) RW(1) RW(1) RW(1) RW(1) RW() RW(1) Features
OPTION | RBPU [INTEDG| TOCS | TosE | PSA | Ps2 | Ps1 | PSO | Bitname
Bit7 Bit6 Bit5 Bit4 Bit3 itz Bit 1 Bit0

Fig.2-2
The OPTION_REG register contains various control bits to configure: TimerO/WDT prescaler, timer TMRO, external interrupt and pull-ups on PORTB.

RBPU - Port B Pull up Enable bit.
1 - PortB pull-ups are disabled.
0 - PortB pull-ups are enabled.

Fig.2-3

« INTEDG - Interrupt Edge Select bit.
o 1 - Interrupt on rising edge of RBO/INT pin.
o 0 - Interrupt on falling edge of RBO/INT pin.

Fig.2-4

::] Pin RE GANIIINT

« TOCS - TMRO Clock Source Select bit.
o 1 - Transition on TOCKI pin.
o 0 - Internal instruction cycle clock (Fosc/4).

Fig.2-5

—— Lo

« TOSE - TMRO Source Edge Select bit selects pulse edge (rising or falling) counted by the timer TMRO through the RA4/TOCKI pin.
o 1 - Increment on high-to-low transition on TOCKI pin.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 24/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

0 - Increment on low-to-high transition on TOCKI pin.

Fig.2-6
OPTION_REG PSA - Prescaler Assignment bit assigns prescaler (only one exists) to the timer or watchdog timer.
(B 1 - Prescaler is assigned to the WDT.

0 - Prescaler is assigned to the TMRO.

Fig.2-7

PS2, PS1, PS0 Prescaler Rate Select bits

Prescaler rate is selected by combining these three bits. Described, as shown in the table below, prescaler rate depends on whether prescaler is assigned (TMRO) or watch-dog timer
(WDT).

PS2 PS1 PSO TMRO WDT
0 0 0 1:2 1:1
0 0 1 1:4 1:2
0 1 0 1:8 1:4
0 1 1 1:16 1:8
1 0 1 1:64 1:32
1 1 0 1:128 1:64
1 1 1 1:256 1:128

Table 2-2

In order to achieve 1:1 prescaler rate when the timer TMRO counts up pulses, the prescaler should be assigned to the WDT. As a result of this, the timer TMRO does not use the prescaler,
but directly counts pulses generated by the oscillator, which was the objective!

Interrupt System Registers

When an interrupt request arrives it does not mean that interrupt will automatically occur, because it must also be enabled by the user (from within the program). Because of that, there are
special bits used to enable or disable interrupts. It is easy to recognize these bits by |E contained in their names (stands for Interrupt Enable). Besides, each interrupt is associated with
another bit called the flag which indicates that interrupt request has arrived regardless of whether itis enabled or not. They are also easily recognizable by the last two letters contained in
their names- IF (Interrupt Flag).

As seen, everything is based on a simple and efficientidea. When an interrupt request arrives, the flag bit is to be set first.

Interrupt EGH Interrupt
request IF bit - - N
. Flag = Enabled

Fig. 2-8 Interrupt System Registers

If the appropriate |E bit is not set (0), this event will be completely ignored. Otherwise, an interrupt occurs! In case several interrupt sources are enabled, itis necessary to detect the active
one before the interrupt routine starts execution. Source detection is performed by checking flag bits.

Itis important to understand that the flag bits are not automatically cleared, but by software during interrupt routine execution. If this detail is neglected, another interrupt will occur
immediately upon return to the program, even though there are no more requests for its execution! Simply put, the flag as well as IE bit remained set.

All interrupt sources typical of the PIC16F887 microcontroller are shown on the next page. Note several things:

¢ GIE bit - enables all unmasked interrupts and disables all interrupts simultaneously.
« PEIE bit - enables all unmasked peripheral interrupts and disables all peripheral interrupts (This does not concern Timer TMRO and port B interrupt sources).

To enable interrupt caused by changing logic state on port B, it is necessary to enable it for each bit separately. In this case, bits of the IOCB register have the function to control |E bits.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 25/155

16/2/2016

OSCILLATOR

converter —"——IDE-

USART

receiver

transmitter

MSSP {5PI, 12C)
Transmission

Error

CCP1 module
CCPZ module
Analog
comparator 1
Analog
comparator 2

INTCON Register

——rm--

Introduction: World of microcontrollers - Book: PIC Microcontrollers

SFRs: INTCON, PIE1, PIEZ, PIR1, PIRZ and 10CB 1

Timer 0

Pin RBOJINT

Waking up

v
L, Interrupt . CPU

[~

Fig. 2-9 Interrupt SFRs

The INTCON register contains various enable and flag bits for TMRO register overflow, PORTB change and external INT pin interrupts.

RW(O) RW(®) RW(0) RWI(0)

RW() RW(©) RW(@ RW(x

Features

BIE | TOF | INTF | RBIF | Bitname

INTCON [GIE | PEIE | TOIE | INTE | R

Bit7

Bis

Bit5 ‘Bit4

ma BiR2 Bit 1 : Bit0

Legend

RIW ReadableWritable bit

10)
(x)

After resot, bit is cleared
After reset, bit is unknown

Fig. 2-10 INTCON Register

GIE - Global Interrupt Enable bit - controls all possible interrupt sources simultaneously.

o 1 - Enables all unmasked interrupts.
o 0 - Disables all interrupts.

PEIE - Peripheral Interrupt Enable bit acts similar to GIE, but controls interrupts enabled by peripherals. It means that it does not affect interrupts triggered by
the timer TMRO or by changing state on port B or RBO/INT pin.

o 1 - Enables all unmasked peripheral interrupts.

o 0 - Disables all peripheral interrupts.

TOIE - TMRO Overflow Interrupt Enable bit controls interrupt enabled by TMRO overflow.

o 1 - Enables the TMRO interrupt.
o 0 - Disables the TMRO interrupt.

INTE - RBO/INT External Interrupt Enable bit controls interrupt caused by changing logic state on pin RBO/IN (external interrupt).

o 1 - Enables the INT external interrupt.
o 0 - Disables the INT external interrupt.

RBIE - RB Port Change Interrupt Enable bit. When configured as inputs, port B pins may cause interrupt by changing their logic state (no matter whether it is

highto- low transition or vice versa, fact that something is changed only matters). This bit determines whether interrupt is to occur or not.
o 1 - Enables the port B change interrupt.
o 0 - Disables the port B change interrupt.

TOIF - TMRO Overflow Interrupt Flag bit registers the timer TMRO register overflow, when counting starts from zero.
o 1 -TMRO register has overflowed (bit must be cleared in software).

o 0 - TMRO register has not overflowed.

INTF - RBO/INT External Interrupt Flag bit registers change of logic state on the RBO/INT pin.
o 1 -The INT external interrupt has occurred (must be cleared in software).
o 0-The INT external interrupt has not occurred.

RBIF - RB Port Change Interrupt Flag bit registers change of logic state of some port B input pins.

o 1 - At least one of the port B general purpose I/O pins has changed state. Upon reading portB, RBIF (flag bit) must

be cleared in software.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

26/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

o 0 - None of the port B general purpose I/O pins has changed state.

PIE1 Register

The PIE1 register contains the peripheral interrupt enable bits.

RIW (0) RW (0) RIW(0) RW (0) RMW(0) RW (0) RW(0) Features

PIE1| - | ADIE | RCIE | TXIE | SSPIE [CCP1IE | TMR2IE | TMRIIE | Bit name
Bit7 Bit 6 Bits Bitd Bit3 Bit2 Bit1 BitO
Legend

- Unimplemented bit
RW ReadableMWritable bit
{0} After reset, bit is cleared

Fig. 2-11 PIE1 register

+ ADIE - A/D Converter Interrupt Enable bit.
o 1 - Enables the ADC interrupt.
o 0 - Disables the ADC interrupt.

+ RCIE - EUSART Receive Interrupt Enable bit.
o 1 - Enables the EUSART receive interrupt.

o 0 - Disables the EUSART receive interrupt.

¢ TXIE - EUSART Transmit Interrupt Enable bit.
o 1 - Enables the EUSART transmit interrupt.

o 0 - Disables the EUSART transmit interrupt.

« SSPIE - Master Synchronous Serial Port (MSSP) Interrupt Enable bit - enables an interrupt request to be generated after each data transfer via synchronous
serial communication module (SPI or 12C mode).

o 1 - Enables the MSSP interrupt.
o 0 - Disables the MSSP interrupt.

CCP1IE - CCP1 Interrupt Enable bit enables an interrupt request to be generated in CCP1 module used for PWM signal processing.
o 1 - Enables the CCP1 interrupt.
o 0 - Disables the CCP1 interrupt.

TMR2IE - TMR2 to PR2 Match Interrupt Enable bit
o 1 - Enables the TMR2 to PR2 match interrupt.

o 0 - Disables the TMR2 to PR2 match interrupt.

TMR1IE - TMR1 Overflow Interrupt Enable bit enables an interrupt request to be generated after each timer TMR1 register overflow, i.e. when the counting
starts from zero.

o 1 - Enables the TMR1 overflow interrupt.
o 0 - Disables the TMR1 overflow interrupt.

PIE2 Register

The PIE2 Register also contains the various interrupt enable bits.

RW {0} RIW (0) RW {0) RW (0} RIW (0) RW (0} RW (0) Features
PIE2 | OSFIE | C2IE | C1IE | EEIE | BCLIE |ULPWUIE] - |CCP2IE| Bit name
Bit¥ B 6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bit0
Legend

Unimplemented bit
RW ReadableMritable bit
{0) After reset, bit is cleared

Fig. 2-12 PIE2 Register

* OSFIE - Oscillator Fail Interrupt Enable bit.
o 1 - Enables oscillator fail interrupt.
o 0 - Disables oscillator fail interrupt.

¢ C2IE - Comparator C2 Interrupt Enable bit.
o 1 - Enables Comparator C2 interrupt.
o 0 - Disables Comparator C2 interrupt.
« C1IE - Comparator C1 Interrupt Enable bit.
o 1 - Enables Comparator C1 interrupt.
o 0 - Disables Comparator C1 interrupt.
« EEIE - EEPROM Write Operation Interrupt Enable bit.
o 1 - Enables EEPROM write operation interrupt.
o 0 - Disables EEPROM write operation interrupt.

« BCLIE - Bus Collision Interrupt Enable bit.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 27/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

o 1 - Enables bus collision interrupt.
o 0 - Disables bus collision interrupt.

¢ ULPWUIE - Ultra Low-Power Wake-up Interrupt Enable bit.
o 1 - Enables Ultra Low-Power Wake-up interrupt.
o 0 - Disables Ultra Low-Power Wake-up interrupt.
« CCP2IE - CCP2 Interrupt Enable bit.
o 1 - Enables CCP2 interrupt.
o 0 - Disables CCP2 interrupt.

PIR1 Register

The PIR1 register contains the interrupt flag bits.

RIW (0) R (0) R (0) RIW(0) RW(0) RIW(0) RW(0) Features
PIR1| - | ADIF | RCIF | TXIF | sSPiF | CCP1iF | TMR2IF | TMR1IF | Bit name
Bty Bit 6 Bits Bit4 Bal Bit2 Bit1 Biro
_Legend

Unimplemented bit
R'W ReadableWritable bit
R Readable bit
{0} After reset, bit is cleared

Fig. 2-13 PIR1 Register

« ADIF - A/D Converter Interrupt Flag bit.
o 1 - A/D conversion is completed (bit must be cleared in software).
o 0 - A/D conversion is not completed or has not started.

* RCIF - EUSART Receive Interrupt Flag bit.

o 1-The EUSART receive buffer is full. Bit is cleared by reading the RCREG register.

o 0 -The EUSART receive buffer is not full.

¢ TXIF - EUSART Transmit Interrupt Flag bit.

o 1 -The EUSART transmit buffer is empty. Bit is cleared by writing to the TXREG register.

o 0-The EUSART transmit buffer is full.

* SSPIF - Master Synchronous Serial Port (MSSP) Interrupt Flag bit.

o 1 -The MSSP interrupt condition during data transmit/receive has occurred. These conditions differ depending on
MSSP operating mode (SPI or 12C) This bit must be cleared in software before returning from the interrupt service

routine.
o 0 - No MSSP interrupt condition has occurred.

« CCP1IF - CCP1 Interrupt Flag bit.

o 1 - CCP1 interrupt condition has occurred (CCP1 is unit for capturing, comparing and generating PWM signal).
Depending on operating mode, capture or compare match has occurred. In both cases, bit must be cleared in

software. This bit is not used in PWM mode.
o 0 -No CCP1 interrupt condition has occurred.

¢ TMR2IF - Timer2 to PR2 Interrupt Flag bit

o 1-TMR2 (8-bit register) to PR2 match has occurred. This bit must be cleared in software before returning from the

interrupt service routine.
o 0-No TMR2 to PR2 match has occurred.

¢ TMR1IF - Timer1 Overflow Interrupt Flag bit
o 1-The TMR1 register has overflowed. This bit must be cleared in software.
o 0 - The TMR1 register has not overflowed.

PIR2 Register

The PIR2 register contains the interrupt flag bits.

RW(0) RW(0) RW(0) RW(@) RW(0) RW(0)

RIW (0}

PIR2 | OSFIF | C2IF | C1IF | EEIF | BCLIF |ULPWUIF|

BR7 Bu g Bit5 Bit4 Bit3 Bit2

Legend
Unimplemented bit
R'W ReadableWritable bit

R Readable bit
{0} After reset, bit is cleared

Fig. 2-14 PIR2 register

« OSFIF - Oscillator Fail Interrupt Flag bit.

o 1 - System oscillator failed and clock input has changed to internal oscillator INTOSC. This bit must be cleared in

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

Bit1

Bit0

Features
| ccr2iF | Bit name

28/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

software.
o 0 - System oscillator operates normally.

« C2IF - Comparator C2 Interrupt Flag bit.
o 1 - Comparator C2 output has changed (bit C20UT). This bit must be cleared in software.
o 0 - Comparator C2 output has not changed.

« C1IF - Comparator C1 Interrupt Flag bit.
o 1 - Comparator C1 output has changed (bit C10UT). This bit must be cleared in software.
o 0 - Comparator C1 output has not changed.

« EEIF - EE Write Operation Interrupt Flag bit.
o 1 - EEPROM write completed. This bit must be cleared in software.
o 0 - EEPROM write is not completed or has not started.

« BCLIF - Bus Collision Interrupt Flag bit.

o 1 - A bus collision has occurred in the MSSP when configured for 12C Master mode. This bit must be cleared in
software.

o 0 - No bus collision has occurred.

« ULPWUIF - Ultra Low-power Wake-up Interrupt Flag bit.
o 1 - Wake-up condition has occurred. This bit must be cleared in software.
o 0 - No Wake-up condition has occurred.

¢ CCP2IF - CCP2 Interrupt Flag bit.

o 1 - CCP2 interrupt condition has occurred (unit for capturing, comparing and generating PWM signal). Depending
on operating mode, capture or compare match has occurred. In both cases, the bit must be cleared in software.
This bit is not used in PWM mode.

o 0 - No CCP2 interrupt condition has occurred.

PCON register

The PCON register contains only two flag bits used to differentiate between a: power-on reset, brown-out reset, Watchdog Timer Reset and external reset (through MCLR pin).

RW(0) RW(1) RIW(0) RW(x) Features
PCON | - - |ULPWUE[SBOREN] - | - | POR | BOR | Bitname
B v Br g Bits Bit4 B3 Bit2 Bit 1 Bit O
Legend

- Unimplementad bit
RIW Readable/MWritable bit
(o) After reset, bit is cleared

Fig. 2-15 PCON register

« ULPWUE - Ultra Low-Power Wake-up Enable bit
o 1 - Ultra Low-Power Wake-up enabled.
o 0 - Ultra Low-Power Wake-up disabled.
« SBOREN - Software BOR Enable bit
o 1 - Brown-out Reset enabled.
o 0 - Brown-out Reset disabled.
« POR - Power-on Reset Status bit
o 1 - No Power-on reset has occurred.
o 0 - Power-on reset has occurred. This bit must be set in software after a Power-on Reset occurs.
« BOR - Brown-out Reset Status bit
o 1 - No Brown-out reset has occurred.
o 0 - Brown-out reset has occurred. This bit must be set in software after a Brown-out Reset occurs.

PCL and PCLATH Registers

The size of the program memory of the PIC16F887 is 8K. Therefore, it has 8192 locations for program storing. For this reason the program counter must be 13-bits wide (2213 =8192). In
order that the contents of some location may be changed in software during operation, its address must be accessible through some SFR. Since all SFRs are 8-bits wide, this register is
“artificially” created by dividing its 13 bits into two independent registers: PCLATH and PCL.

If the program execution does not affect the program counter, the value of this register is automatically and constantly incremented +1, +1, +1, +1... In that way, the program is executed just
as itis written- instruction by instruction, followed by a constant address increment.

Bitt2 Bit11 Bit10 Bit9 Bt Bit7T Bité Bit5 Bit4 Bitld Bit2 BiE1 Bito

SN = 2 5t 3 [6it 2| Bit 1]Bit o) {Bit 7]Bit 6 Bit 5| Bit 4| Bit 3 Bit 2| Bit 1] Bit 0

Program Counter (PC)

PCLATH PCL

Fig. 2-16 PCL and PCLATH Registers

If the program counter is changed in software, then there are several things that should be keptin mind in order to avoid problems:

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 29/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

« Eight lower bits (the low byte) come from the PCL register which is readable and writable, whereas five upper bits coming from the PCLATH register are writable
only.

« The PCLATH register is cleared on any reset.

« In assembly language, the value of the program counter is marked with PCL, but it obviously refers to 8 lower bits only. One should take care when using the
“abpwF PCL” instruction. This is a jump instruction which specifies the target location by adding some number to the current address. It is often used when jumping
into a look-up table or program branch table to read them. A problem arises if the current address is such that addition causes change on some bit belonging to
the higher byte of the PCLATH register. Do you see what is going on?

Executing any instruction upon the PCL register simultaneously causes the Prog ram Counter bits to be replaced by the contents of the PCLATH register.
However, the PCL register has access to only 8 lower bits of the instruction result and the following jump will be completely incorrect. The problem is solved by
setting such instructions at addresses ending by xx00h. This enables the program to jump up to 255 locations. If longer jumps are executed by this instruction,
the PCLATH register must be incremented by 1 for each PCL register overflow.

« On subroutine call or jump execution (instructions cALL and Goto), the microcontroller is able to provide only 11-bit addressing. For this reason, similar to RAM
which is divided in “banks”, ROM is divided in four “pages” in size of 2K each. Such instructions are executed within these pages without any problems. Simply,
since the processor is provided with 11-bit address from the program, it is able to address any location within 2KB. Figure 2-17 below illustrates this situation as
a jump to the subroutine PP1 address.

However, if a subroutine or jump address are not within the same page as the location from where the jump is, two “missing’- higher bits should be provided by
writing to the PCLATH register. It is illustrated in figure 2-17 below as a jump to the subroutine PP2 address.

PCLATH 4,3: 00 01 10 1"

e (GOTO) pp,
Z

R CEEETTTTTre

*.m

Instructions:
RETURN, RETLW Of RETFIE

2K 4K 6K

Fig. 2-17 PCLATH Registers

In both cases, when the subroutine reaches instructions RETURN, RETLW OF RETFIE (to return to the main program), the microcontroller will simply continue program execution from where it left off
because the return address is pushed and saved onto the stack which, as mentioned, consists of 13-bit registers.

Indirect addressing

In addition to direct addressing which is logical and clear by itself (it is sufficient to specify address of some register to read its contents), this microcontroller is able to perform indirect
addressing by means of the INDF and FSR registers. It sometimes considerably simplifies program writing. The whole procedure is enabled because the INDF register is not true one
(physically does not exist), but only specifies the register whose address is located in the FSR register. Because of this, write or read from the INDF register actually means write or read from
the register whose address is located in the FSR register. In other words, registers’ addresses are specified in the FSR register, and their contents are stored in the INDF register. The
difference between direct and indirect addressing is illustrated in the figure 2-18 below:

As seen, the problem with the “missing addressing bits” is solved by “borrowing” from another register. This time, it is the seventh bit called IRP from the STATUS register.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 30/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Direct addressing Indirect addressing
E . [= 4 Hﬂnn STATUS register STATUS register E [HHHEHE
v v
RPIL,RP0 6§ |pstruction 0 E 7 FSR ister 0
N 7
Bank Address
01 10 1+«

80h 180h

P

INDF register

—J
FFh

Bank 0 Bank 1 Bank 2 Bank 3
Fig. 2-18 Direct and Indirect addressing

« previous chapter | table of contents | next chapter —

Book: PIC Microcontrollers
TOC Introduction Ch.1 Ch.2 Ch.3 Ch4. Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 App. A App. B App.C

Chapter 3: 1/0 Ports

Features and Functions

One of the most important feature of the microcontroller is a number of input/output pins used for connection with peripherals. In this case, there are in total of thirty-five general purpose /O
pins available, which is quite enough for the most applications.

In order pins’ operation can match internal 8-bit organization, all of them are, similar to registers, grouped into five so called ports denoted by A, B, C, D and E. They all have several features
in common:

« For practical reasons, many I/O pins have two or three functions. If a pin is used as any other function, it may not be used as a general purpose input/output pin;
and
« Every port has its “satellite”, i.e. the corresponding TRIS register: TRISA, TRISB, TRISC etc. which determines performance, but not the contents of the port
bits.
By clearing some bit of the TRIS register (bit=0), the corresponding port pin is configured as output. Similarly, by setting some bit of the TRIS register (bit=1), the corresponding port pin is
configured as input. This rule is easy to remember 0 = Output, 1 = Input.

MICROCONTROLLER

sV
http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 31/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Fig. 3-1 /0 Ports

Port A and TRISA Register

Port A is an 8-bit wide, bidirectional port. Bits of the TRISA and ANSEL control the PORTA pins. All Port A pins act as digital inputs/outputs. Five of them can also be analog inputs (denoted
as AN):

| RA7 | RA6 | RA5 | RA4 | RA3 | RA2 | RA1 | RA0 |

TRISAT | TRISAG | TRISAS | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISAQ |

Legend

R/W Readable/Writable bit
x) After reset, bit is unknown
(1) After reset, bit is set

Fig. 3-2 Port A and TRISA Register

Similar to bits of the TRISA register which determine which of the pins will be configured as input and which as output, the appropriate bits of the ANSEL register determine whether the pins
will act as analog inputs or digital inputs/outputs.

« RAO = ANO (determined by bit ANSO of the ANSEL register);
+ RA1 = AN1 (determined by bit ANS1 of the ANSEL register);
* RA2 = AN2 (determined by bit ANS2 of the ANSEL register);
* RA3 = AN3 (determined by bit ANS3 of the ANSEL register); and
¢ RA5 = AN4 (determined by bit ANS4 of the ANSEL register).

Each bit of this port has an additional function related to some of built-in peripheral units. These additional functions will be described in later chapters. This chapter covers only the RAO
pin’s additional function since it is related to Port A only.

ULPWU Unit

The microcontroller is commonly used in devices which have to operate periodically and, completely independently using a battery power supply. In such cases, minimal power
consumption is one of the priorities. Typical examples of such applications are: thermometers, sensors for fire detection and similar. It is known that a reduction in clock frequency reduces
the power consumption, so one of the most convenient solutions to this problem is to slow the clock down (use 32KHz quartz crystal instead of 20MHz).

Setting the microcontroller to sleep mode is another step in the same direction. However, even when both measures are applied, another problem Mitrocontreiiar
arises. How to wake the microcontroller and set it to normal mode. Itis obviously necessary to have an external signal to change logic state on some of
the pins. Thus, the problem still exists. This signal must be generated by additional electronics, which causes higher power consumption of the entire
device.

The ideal solution would be the microcontroller wakes up periodically by itself, which is notimpossible at all. The circuit which enables thatis shown in
figure on the right.

C
Fig. 3-3 ULPWU Unit
The principle of operation is simple:

A pin is configured as output and logic one (1) is brought to it. That causes the capacitor to be charged. Immediately after this, the same pin is configured as an input. The change of logic
state enables an interrupt and the microcontroller is set to Sleep mode. Afterwards, there is nothing else to be done except wait for the capacitor to discharge by the leakage current flowing
out through the input pin. When it occurs, an interrupt takes place and the microcontroller continues with the program execution in normal mode. The whole sequence is repeated...

Theoretically, this is a perfect solution. The problem is that all pins able to cause an interrupt in this way are digital and have relatively large
leakage current when their voltage is not close to the limit values Vdd (1) or Vss (0). In this case, the capacitor is discharged for a short time
since the current amounts to several hundreds of microamperes. This is why the ULPWU circuit able to register slow voltage drops with ultra
low power consumption was designed. Its output generates an interrupt, while its input is connected to one of the microcontroller pins. Itis the
RAO pin. Referring to Fig. 3-4 (R=200 ohms, C=1nF), discharge time is approximately 30mS, while the total consumption of the microcontroller
is 1000 times lower (several hundreds of nanoamperes).

Fig. 3-4 Sleep Mode 1k

PIC16F887

Port B and TRISB Register

Port B is an 8-bit wide, bidirectional port. Bits of the TRISB register determine the function of its pins.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 32/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

| RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RBO |

Legend

- Bit is unimplemented
RW Readable/Writable bit

(x} After reset, bit is unknown
(1) After reset, bit is set

Fig. 3-5 Port B and TRISB register

Similar to Port A, a logic one (1) in the TRISB register configures the appropriate port pin as input and vice versa. Six pins on this port can act as analog inputs (AN). The bits of the ANSELH
register determine whether these pins act as analog inputs or digital inputs/outputs:

« RBO = AN12 (determined by bit ANS12 of the ANSELH register);

+ RB1 = AN10 (determined by bit ANS10 of the ANSELH register);

* RB2 = ANS8 (determined by bit ANS8 of the ANSELH register);

« RB3 = AN9 (determined by bit ANS9 of the ANSELH register);

¢ RB4 = AN11 (determined by bit ANS11 of the ANSELH register); and
+ RB5 = AN13 (determined by bit ANS13 of the ANSELH register).

Each Port B pin has an additional function related to some of the built-in peripheral units, which will be explained in later chapters.

« All the port pins have built in pull-up resistor, which make them ideal for connection to push-buttons, switches and optocouplers. In order to connect these
resistors to the microcontroller ports, the appropriate bit of the WPUB register should be set.*

| WPUB? | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUBO |

Legend

RW Readable/Writable bit
(1) After reset, bit is set

Fig. 3-6 WPUB register

Having a high level of resistance (several tens of kilo ohms), these “virtual” resistors do not affect pins configured as outputs, but serves as a useful complement to inputs. As such, they are
connected to CMOS logic circuit inputs. Otherwise, they would act as if they are floating because of their high input resistance.

Pin with pull-up resistor Pin without pull-up resistor

Digital input Digital output

4y

MCU MCU

Fig. 3-7 Pull-up resistors

* Apart from the bits of the WPUB register, there is another bit affecting pull-up resistors installation. It is RBPU bit of the OPTION_REG. Itis a general-purpose bit because it affects
installation of all Port resistors.

« If enabled, each Port B bit configured as an input may cause an interrupt by changeing its logic state. In order to enable pins to cause an interrupt, the
appropriate bit of the IOCB register should be set.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 33/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

[10CB7 | 10CB6 | 10CBS | 10CB4 | I0CB3 | 10CB2 | 10CB1 | I0CEO |

Legend

RMW Readable/Writable bit
(0) After reset, bit is cleared

Fig. 3-8 IOCB register

Because of these features, the port B pins are commonly used for checking push-buttons on the keyboard because they unerringly register any button press. Therefore, there is no need to
“scan” these inputs all the time.

f'_‘\"“‘“-—-/_. 1K
RBOM a a —— 123
RB1 || {’f: . 4 |4ISI6
RBZ: P o 1K o ;g?
RBS: JJP) 2K
- |
x : I|1ll JJP}

y : Il1 "
z Il1 L]

McU

Fig. 3-9 Keyboard Example

When the X, Y and Z pins are configured as outputs set to logic one (1), itis only necessary to wait for an interrupt request which arrives upon any button press. By combining zeros and units
on these outputs itis checked which push-button is pressed.

Pin RBO/INT

The RBO/INT pin is a single “true” external interrupt source. It can be configured to react to signal raising edge (zero-to-one transition) or signal falling edge (one-to-zero transition). The
INTEDG bit of the OPTION_REG register selects the signal.

RB6 and RB7 Pins

You have probably noticed that the PIC16F887 microcontroller does not have any special pins for programming (writing the program to ROM). The Ports pins available as general purpose
1/0 pins during normal operation are used for this purpose (Port B pins clock (RB6) and data transfer (RB7) during program loading). In addition, it is necessary to apply a power supply
voltage Vdd (5V) and Vss (0V), as well as voltage for FLASH memory programming Vpp (12-14V). During programming, Vpp voltage is applied to the MCLR pin. All details concerning this
process, as well as which one of these voltages is applied first, are beside the point, the programmers electronics are in charge of that. The pointis that the program can be loaded to the
microcontroller even when it is soldered onto the target device. Normally, the loaded program can also be changed in the same way. This function is called ICSP (In-Circuit Serial
Programming). Itis necessary to plan ahead when using it.

Itis not complicated at all! Itis only necessary to install a 4-pin connector onto the target device so that the necessary programmer voltages " PiC16Fas?
may be applied to the microcontroller. In order that these voltages don'tinterfere with other device electronics, design some sort of circuit
breaking into this connection (using resistors or jumpers).

Fig. 3-10 ICSP Connection

Port C and TRISC Register

Port C is an 8-bit wide, bidirectional port. Bits of the TRISC Register determine the function of its pins. Similar to other ports, a logic one (1) in the TRISC Register configures the appropriate
port pin as an input.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 34/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

| RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RCO |

Legend

R/W Readable/Writable bit
(x) After reset, bit is unknown
(1) After reset, bit is set

Fig. 3-12 Port C and TRISC Register
All additional functions of this port's bits will be explained later.

Port D and TRISD Register

Port D is an 8-bit wide, bidirectional port. Bits of the TRISD register determine the function of its pins. A logic one (1) in the TRISD register configures the appropriate port pin as input.

| RD7 | RD6 | RD5 | RD4 | RD3 | RD2 | RD1 | RDO |

| TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISDO |

Legend

RW Readable/Writable bit
(x) After reset, bit is unknown
(1) After reset, bit is set

Fig. 3-13 Port D and TRISD Register

Port E and TRISE Register

Port E is a 4-bit wide, bidirectional port. The TRISE register’s bits determine the function of its pins. Similar to other ports, a logic one (1) in the TRISE register configures the appropriate port

pin as input. The exception is RE3 which is input only and its TRIS bitis always read as ‘1".

|- | - | - | - | RE3 | RE2 | RE1 | REO |

- [- | - [- [TRISE3 | TRISE2 | TRISE1 | TRISEO_

Legend

- Bit is unimplemented

R/W Readable/Writable bit

R Readable bit

(x) After reset, bit is unknown
(1) After reset, bit is set

Fig. 3-14 Port E and TRISE Register

Similar to Ports A and B, three pins can be configured as analog inputs in this case. The ANSELH register bits determine whether a pin will act as analog input (AN) or digital input/output:

« REO = AN5 (determined by bit ANS5 of the ANSELregister);
+ RE1 = ANG6 (determined by bit ANS6 of the ANSELregister); and
« RE2 = AN7 (determined by bit ANS7 of the ANSELregister).

ANSEL and ANSELH Registers

The ANSEL and ANSELH registers are used to configure the input mode of an I/O pin to analog or digital.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

35/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

| ANS7 | ANS6 | ANS5 | ANS4 | ANS3 | ANS2 | ANS1 | ANSO |

Legend

- Bit is unimplemented
RW Readable/Writable bit
(1} After reset, bit is set

Fig. 3-15 ANSEL and ANSELH Registers

The rule is:
To configure a pin as an analog input, the appropriate bit of the ANSEL or ANSELH registers must be set (1). To configure pin as digital input/output, the appropriate bit must be cleared (0).

The state of the ANSEL bits has no affect on digital output functions. The result of any attempt to read some port pin configured as analog input will be 0.

Fig. 3-16 ANSEL and ANSELH Configuration

In Short:

You will probably never write a program which fully utilises all the Ports in an efficient manner to justify learning all there is to know about these Ports. However, they are probably the
simplest modules within the microcontroller. This is how they are used:

« When designing a device, select a port through which the microcontroller will communicate to the peripheral environment. If you intend using only digital
inputs/outputs, select any port you want. If you intend using some of the analog inputs, select the appropriate ports supporting such pins configuration (ANO-
AN13);

¢ Each port pin may be configured as either input or output. Bits of the TRISA, TRISB, TRISC, TRISD and TRISE registers determine how the appropriate ports
pins- PORTA, PORTB, PORTC, PORTD and PORTE will act;

« If you use some of the analog inputs, set the appropriate bits of the ANSEL and ANSELH registers at the beginning of the program;

« If you use switches and push-buttons as input signal source, connect them to Port B pins because they have pull-up resistors. The use of these resistors is
enabled by the RBPU bit of the OPTION_REG register, whereas the installation of individual resistors is enabled by bits of the WPUB register; and

« It is usually necessary to react as soon as input pins change their logic state. How ever, it is not necessary to write a program for changing pins' logic state. It is
far simpler to connect such inputs to the PORTB pins and enable the interrupt on every voltage change. Bits of the registers IOCOB and INTCON are in charge
of that.

«— previous chapter | table of contents | next chapter —

Book: PIC Microcontrollers
TOC Introduction Ch.1 Ch.2 Ch.3 Ch4. Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 App.A App. B App.C
Chapter 4: Timers

The timers of the PIC16F887 microcontroller can be briefly described in only one sentence. There are three completely independent timers/counters marked as TMRO, TMR1 and TMR2. But
it's not as simple as that.

Timer TMRO

The timer TMRO has a wide range of applications in practice. Very few programs don't use itin some way. Itis very convenient and easy to use for writing programs or subroutines for
generating pulses of arbitrary duration, time measurement or counting external pulses (events) with almost no limitations.

The timer TMRO module is an 8-bit timer/counter with the following features:

« 8-bit timer/counter;
« 8-bit prescaler (shared with Watchdog timer);
* Programmable internal or external clock source;

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 36/155

16/2/2016

« Interrupt on overflow; and
« Programmable external clock edge selection.

Introduction: World of microcontrollers - Book: PIC Microcontrollers

Figure 4-1 below represents the timer TMRO schematic with all bits which determine its operation. These bits are stored in the OPTION_REG Register.

Mode selection
1 = counter
0 = timer

|

|

Edge sefection
1 = raising edge |
0 = falling edge A 4

TOCS B ! .
| [el
TOSE i ' woT

= Time-out

Counter (timer)
8-bit register

Pin RA4/TOCK
Signal external source

OPTION_REG Register

Fig. 4-1 Timer TMRO

Prescaler assignment:
1 - assigned to WDT

PSA E 44— | - assigned to timer or counter

—] Lr
— . o _
| l- Watch-dog timer

|
Prescaler
PS2, PS1, PSO

Bits fm[prescaler rate selection

TMROIF

Interrupt flag

Legend

RW Readable/Writable bit
(1) After reset, bit iz set

Fig. 4-2 OPTION_REG Register

+« RBPU - PORTB Pull-up enable bit
o 1-PORTB pull-up resistors are disabled; and
o 0-PORTB pins can be connected to pull-up resistors.

« INTEDG - Interrupt Edge Select bit
o 1 - Interrupt on rising edge of INT pin (0-1); and
o 0 - Interrupt on falling edge of INT pin (1-0).

¢ TOCS - TMRO Clock Select bit

o 1 - Pulses are brought to TMRO timer/counter input through the RA4 pin; and

o 0 - Internal cycle clock (Fosc/4).

« TOSE - TMRO Source Edge Select bit
o 1 -Increment on high-to-low transition on TMRO pin; and
o 0 - Increment on low-to-high transition on TMRO pin.

« PSA - Prescaler Assignment bit
o 1 -Prescaler is assigned to the WDT; and
o 0 - Prescaler is assigned to the TMRO timer/counter.

« PS2, PS1, PSO - Prescaler Rate Select bit
o Prescaler rate is adjusted by combining these bits

As seen in the table 4-1, the same combination of bits gives different prescaler rate for

the timer/counter and watch-dog timer respectively.

PS2 PS1 PSo0
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

TMRO

1:4
1:8
1:16

1:32

WDT

1:2
1:4
1:8

1:16

37/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

1 0 1 1:64 1:32
1 1 0 1:128 1:64
1 1 1 1:256 1:128

Table 4-1 Prescaler Rate

The function of the PSA bitis shown in the two figures below:

Prescaler
*

PS2, PS1, PSO

| Pin RA4/TOCK

Pin RA4/TOCK

Prescaler

PS2, PS1, PSO

I——D—Wt TMROIF |

Fig. 4-4 The function of the PSA bit 1
As seen, the logic state of the PSA bit determines whether the prescaler is to be assigned to the timer/counter or watch-dog timer.
Additionally it is also worth mentioning:

« When the prescaler is assigned to the timer/counter, any write to the TMRO register will clear the prescaler;

« When the prescaler is assigned to watch-dog timer, a CLRWDT instruction will clear both the prescaler and WDT;

« Writing to the TMRO register used as a timer, will not cause the pulse counting to start immediately, but with two instruction cycles delay. Accordingly, it is
necessary to adjust the value written to the TMRO register;

« When the microcontroller is setup in sleep mode, the oscillator is tumed off. Overflow cannot occur since there are no pulses to count. This is why the TMRO
overflow interrupt cannot wake up the processor from Sleep mode;

« When used as an external clock counter without prescaler, a minimal pulse length or a pause between two pulses must be 2 Tosc + 20 nS. Tosc is the oscillator
signal period;

« When used as an external clock counter with prescaler, a minimal pulse length or a pause between two pulses is 10nS;

* The 8-bit prescaler register is not available to the user, which means that it cannot be directly read or written to;

« When changing the prescaler assignment from TMRO to the watch-dog timer, the following instruction sequence must be executed in order to avoid reset:

BANKSEL TMRO

CLRWDT ;CLEAR WDT

CLRF TMRO ;CLEAR TMRO AND PRESCALER

BANKSEL OPTION_REG

BSF OPTION_REG,PSA ;PRESCALER IS ASSIGNED TO THE WDT
CLRWDT ;CLEAR WDT

MOVLW b’11111000" ;SELECT BITS PS2,PS1,PS0O AND CLEAR
ANDWF OPTION_REG,W ; THEM BY INSTRUCTION “LOGICAL AND”
IORLW b’ 00000101 ;BITS PS2, PS1, AND PSO SET

MOVWE OPTION_REG ;PRESCALER RATE TO 1:32

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

38/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

* Likewise, when changing the prescaler assignment from the WDT to the TMRO, the following instruction sequence must be executed:

BANKSEL TMRO

CLRWDT ;CLEAR WDT AND PRESCALER
BANKSEL OPTION_REG
MOVLW b’11110000" ;SELECT ONLY BITS PSA,PS2,PS1,PSO

ANDWF OPTION_REG,W ;CLEAR THEM AFTERWARDS BY INSTRUCTION
; “LOGICAL AND”

IORLW b’ 00000011" ; PRESCALER RATE IS 1:16

MOVWE OPTION_REG

In order to use TMRO properly, itis necessary:

To select mode:

« Timer mode is selected by the TOCS bit of the OPTION_REG register, (TOCS: O=timer, 1=counter);

+ When used, the prescaler should be assigned to the timer/counter by clearing the PSA bit of the OPTION_REG register. The prescaler rate is set by using the

PS2-PS0 bits of the same register; and
« When using interrupt, the GIE and TMROIE bits of the INTCON register should be set.

To measure time:

« Reset the TMRO register or write some well-known value to it;
¢ Elapsed time (in microseconds when using quartz 4MHz) is measured by reading the TMRO register; and

« The flag bit TMROIF of the INTCON register is automatically set every time the TMRO register overflows. If enabled, an interrupt occurs.

To count pulses:

« The polarity of pulses are to be counted is selected on the RA4 pin are selected by the TOSE bit of the OPTION register (TOSE: O=positive, 1=negative pulses);

and

« Number of pulses may be read from the TMRO register. The prescaler and interrupt are used in the same manner as in timer mode.

Timer TMR1

Timer TMR1 module is a 16-bit timer/counter, which means that it consists of two registers (TMR1L and TMR1H). It can count up 65.535 pulses in a single cycle, i.e. before the counting

starts from zero.

16-bit counter register

A
.
TMR1H Register TMR1L Regiser
A ~ A, g
bit 15 bits bit7 bit 0

Fig. 4-5 Timer TMR1

Similar to the timer TMRO, these registers can be read or written to at any moment. In case an overflow occurs, an interrupt is generated.

The timer TMR1 module may operate in one of two basic modes- as a timer or a counter. However, unlike the timer TMRO, each of these modules has additional functions.

Parts of the TICON register are in control of the operation of the timer TMR1.

TRMRI1ON

T1OSCEN E TMRICS nsmc
55 i
“F
Prescaler
z
=2
EE
o] TICKPS0
=} TICKPS1
c
- rioss B
i TIGINV
Pin |
TIG i — ;
8
b
[-
C2 > caour
= GATE

Fig. 4-6 Timer TMR1 Overview

Timer TMR1 Prescaler

Timer TMR1 has a completely separate prescaler which allows 1, 2, 4 or 8 divisions of the clock input. The prescaler is not directly readable or writable. However, the prescaler counter is

automatically cleared upon write to the TMR1H or TMR1L register.

Timer TMR1 Oscillator

RCO0/T10S0 and RC1/T10SI pins are used to register pulses coming from peripheral electronics, but they also have an additional function. As seen in figure 4-7, they are simultaneously

configured as both input (pin RC1) and output (pin RCO) of the additional LP quartz oscillator (low power).

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

39/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

This additional circuit is primarily designed for operating at low frequencies (up to 200 KHz), more precisely, for using the 32,768 KHz quartz crystal. Such crystals are used in quartz
watches because it is easy to obtain one-second-long pulses by simply dividing this frequency.

Since this oscillator does not depend on internal clocking, it can operate even in sleep mode. Itis enabled by setting the T1IOSCEN control bit of the T1CON register. The user must provide
a software time delay (a few milliseconds) to ensure proper oscillator start-up.
Ti650 Tios) is: the higher the capacitor's capacity the higher the stability, which, at the same time, prolongs the time needed for the oscillator stability.

32,768 KHz OSCILLATOR FREQUENCY c1 c2
|:| 32 kHz 33 pF 33 pF
ci cz LP 100 kHz 15 pF 15 pF

15 - 33pF 15 - 33pF 200 kHz 15 pF 15 pF

"'C‘“"“"S Table below shows the recommended values of capacitors to suit the quartz oscillator. These values do not have to be exact. However, the general rule

Fig. 4-7 Timer TMR1 Oscillator
GND
Timer TMR1 Gate

Timer 1 gate source is software configurable to be the T1G pin or the output of comparator C2. This gate allows the timer to directly time external events using the logic state on the T1G pin
or analog events using the comparator C2 output. Refer to figure 4-7 above. In order to time a signals duration itis sufficient to enable such gate and count pulses having passed through it.

TMR1 in timer mode

In order to select this mode, itis necessary to clear the TMR1CS bit. After this, the 16-bit register will be incremented on every pulse coming from the internal oscillator. If the 4MHz quartz
crystal is in use, it will be incremented every microsecond.

In this mode, the T1SYNC bit does not affect the timer because it counts internal clock pulses. Since the whole electronics uses these pulses, there is no need for synchronization.

TMR1CS a TMR10ON a

Pulses to count

> o

TMR1H

Prescaler
1,2, 4,8

™\
= E ¥
Synchronization ﬁ

TMRI1L

0

T1CKPS0
T1CKPS1

£
2
£
=

TMR1IF

Fig. 4-8 TMR1 in timer mode

The microcontroller’s clock oscillator does not run during sleep mode so the timer register overflow cannot cause any interrupt.

Timer TMR1 Oscillator

The power consumption of the microcontroller is reduced to the lowest level in Sleep mode. The point s to stop the oscillator. Anyway, it is easy to set the timer in this mode- by writing a
SLEEP instruction to the program. A problem occurs when it is necessary to wake up the microcontroller because only an interrupt can do that. Since the microcontroller “sleeps”, an
interrupt must be triggered by external electronics. It can all getincredibly complicated if it is necessary the ‘wake up’ occurs atregular time intervals...

T10SCEN ' TMRICS l T1$YNC

Pin
T108!1
1

Prescaler
§

. 1,2,4,8
SIS T10SC

[TICKPS1

Synchronization

T1CKPS0

Pin
T10S0/T1CKI

Fig. 4-9 Timer TMR1 Oscillator

In order to solve this problem, a completely independent Low Power quartz oscillator, able to operate in sleep mode, is built into the PIC16F887 microcontroller. Simply, what previously has
been a separate circuit, it is now built into the microcontroller and assigned to the timer TMR1. The oscillator is enabled by setting the T1IOSCEN bit of the T1CON register. After that, the
TMR1CS bit of the same register then is used to determine that the timer TMR1 uses pulse sequences from that oscillator.

« The signal from this quartz oscillator is synchronized with the microcontroller clock by clearing the TISYNC bit. In that case, the timer cannot operate in sleep
mode. You wonder why? Because the circuit for synchronization uses the clock of microcontroller!; and
« The TMR1 register overflow interrupt may be enabled. Such interrupts will occur in sleep mode as well.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 40/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
TMR1 in counter mode

Timer TMR1 starts to operate as a counter by setting the TMR1CS bit. It means that the timer TMR1 is incremented on the rising edge of the external clock input T1CKI. If control bit TISYNC
of the TICON register is cleared, the external clock inputs will be synchronized on their way to the TMR1 register. In other words, the timer TMR1 is synchronized to the microcontroller
system clock and called a synchronous counter.

When the microcontroller ,operating in this way, is set in sleep mode, the TMR1H and TMR1L timer registers are not incremented even though clock pulses appear on the input pins. Simply,
since the microcontroller system clock does not run in this mode, there are no clock inputs to use for synchronization. However, the prescaler will continue to run if there are clock pulses on
the pins since itis just a simple frequency divider.

Pulses to count

Pin
TIO8!

Pin
TIOSOMICK

Fig. 4-11 Counter Mode

This counter registers a logic one (1) on input pins. Itis important to understand that at least one falling edge must be

TICKI =1 ——
| | | | | | | | | registered prior to the firstincrement on rising edge. Refer to figure on the left. The arrows in figure 4-11 denote counter
ncrements.

Counter on

T1CON Register

| T1GINV [TMR1GE [T1CKPS1[T1CKPSO[TOSCEN [T1SYNC [TMR1CS [TMR1ON|

Legend

R'W Readable/Writable bits
(D} After reset, bit is cleared

Fig. 4-12 TICON Register
T1GINV - Timer1 Gate Invert bit acts as logic state inverter on the T1G pin gate or the comparator C2 output (C20UT) gate. It enables the timer to mea sure time whilst the gate is high or low.
« 1 -Timer 1 counts when the pin T1G or bit C20UT gate is high (1); and
¢ 0 - Timer 1 counts when the pin T1G or bit C20UT gate is low (0).
TMR1GE - Timer1 Gate Enable bit determines whether the pin T1G or comparator C2 output (C20UT) gate will be active or not. This bitis functional only in the event that the timer TMR1 is
on (bit TMR1ON = 1). Otherwise, this bitis ignored.
« 1 Timer TMR1 is on only if timer 1 gate is not active; and
« 0 Gate does not affect the timer TMR1.
T1CKPS1, TICKPSO0 - Timer1 Input Clock Prescale Select bits determine the rate of the prescaler assigned to the timer TMR1.

T1CKPS1 T1CKPSO PRESCALER RATE
0 0 1:1
0 1 1:2
1 0 1:4
1 1 1:8

Table 4-2 Prescaler Rate
T10SCEN - LP Oscillator Enable Control bit

« 1 -LP oscillator is enabled for timer TMR1 clock (oscillator with low power consumption and frequency 32.768 kHz); and

¢ 0 - LP oscillator is off.
T1SYNC - Timer1 External Clock Input Synchronization Control bit enables synchronization of the LP oscillator input or T1CKI pin input with the microcontroller internal clock. When
counting pulses from the local clock source (bit TMR1CS = 0), this bitis ignored.

* 1 -Do not synchronize external clock input; and
« 0 - Synchronize external clock input.

TMR1CS - Timer TMR1 Clock Source Select bit

¢ 1-Counts pulses on the T1CKI pin (on the rising edge 0-1); and
¢ 0 - Counts pulses of the internal clock of microcontroller.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 41/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

TMR1ON - Timer1 On bit

¢ 1 -Enables Timer TMR1; and
¢ 0 - Stops Timer TMR1.

In order to use the timer TMR1 properly, itis necessary to perform the following:

« Since it is not possible to turn off the prescaler, its rate should be adjusted by using bits TICKPS1 and T1CKPSO0 of the register TICON (Refer to table 4-2);

« The mode should be selected by the TMR1CS bit of the same register (TMR1CS: 0= the clock source is quartz oscillator, 1= the clock source is supplied
externally);

« By setting the TIOSCEN bit of the same register, the timer TMR1 is turned on and the TMR1H and TMR1L registers are incremented on every clock input.
Counting stops by clearing this bit;

« The prescaler is cleared by clearing or writing the counter registers; and

« By filling both timer registers, the flag TMR1IF is set and counting starts from zero.

Timer TMR2

Timer TMR2 module is an 8-bit timer which operates in a very specific way.

PWM U

Synchronous
serial port
A

Prescaler
<
-

T2CKPS1 PSRRI |nterrupt

T2CKPS0 ? . TMR2IF
Osc. % T20UTPSO
T20UTPS2

T20UTPS3

Fig. 4-13 Timer TMR2

The pulses from the quartz oscillator first pass through the prescaler whose rate may be changed by combining the T2ZCKPS1 and T2CKPSO0 bits. The output of the prescaler is then used to
increment the TMR2 register starting from 00h. The values of TMR2 and PR2 are constantly compared and the TMR2 register keeps on being incremented until it matches the value in PR2.
When a match occurs, the TMR2 register is automatically cleared to 00h. The timer TMR2 Postscaler is incremented and its output is used to generate an interruptifitis enabled.

The TMR2 and PR2 registers are both fully readable and writable. Counting may be stopped by clearing the TMR20ON bit, which contributes to power saving.
As a special option, the moment of TMR2 reset may be also used to determine synchronous serial communication baud rate.

The timer TMR2 is controlled by several bits of the T2CON register.

T2CON Register

Legend

- Bit is unimplemented
R/W Readable/Writable bit
(0) After reset, bit is cleared

Fig. 4-14 T2CON Register

TOUTPS3 - TOUTPSO - Timer2 Output Postcaler Select bits are used to determine the postscaler rate according to the following table:

TOUTPS3 TOUTPS2 TOUTPS1 TOUTPSO POSTSCALER RATE
0 0 0 0 1:1
0 0 0 1 1:2
0 0 1 0 1:3
0 0 1 1 1:4
0 1 0 0 1:5
0 1 0 1 1:6
0 1 1 0 1.7
0 1 1 1 1:8
1 0 0 0 1:9
1 0 0 1 1:10
1 0 1 0 1:11
1 0 1 1 1:12
1 1 0 0 1:13
1 1 0 1 1:14

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 42/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Table 4-3 Postscaler Rate
TMR2ON - Timer2 On bit turns the timer TMR2 on.

e 1-TimerT2is on; and
e 0-TimerT2is off.

T2CKPS1, T2CKPSO0 - Timer2 Clock Prescale bits determine prescaler rate:

T2CKPS1 T2CKPSO0 PRESCALER RATE
0 0 1:1
0 1 1:4
1 X 1:16

Table 4-4 Prescaler Rate
When using the TMR2 timer, one should know several specific details that have to do with its registers:

« Upon power-on, the PR2 register contains the value FFh;

« Both prescaler and postscaler are cleared by writing to the TMR2 register;

« Both prescaler and postscaler are cleared by writing to the T2CON register; and
« On any reset, both prescaler and postscaler are cleared.

« previous chapter | table of contents | next chapter —

Book: PIC Microcontrollers

TOC Introduction Ch.1 Ch.2 Ch.3 Ch4. Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 App. A App.B App. C
Chapter 5: CCP Modules

The abbreviation CCP stands for Capture/Compare/PWM.

The CCP module is a peripheral which allows the user to time and control different events.

Capture Mode, allows timing for the duration of an event. This circuit gives insightinto the current state of a register which constantly changes its value. In this case, itis the timer TMR1
register.

Compare Mode compares values contained in two registers at some point. One of them is the timer TMR1 register. This circuit also allows the user to trigger an external event when a
predetermined amount of time has expired.

PWM - Pulse Width Modulation can generate signals of varying frequency and duty cycle.
The PIC16F887 microcontroller has two such modules - CCP1 and CCP2.

Both of them are identical in normal mode, with the exception of the Enhanced PWM features available on CCP1 only. This is why this chapter describes the CCP1 module in detail.
Concerning CCP2, only the features distinguishing it from CCP1 will be covered.

Complicated? All this is only a simplified explanation on their operation. Everything is much more complicated in practice because these modules can operate in many different modes. Try
to analyze their operation on the basis of the tables describing bit functions. If you use any CCP module, first select the mode you need, analyze the appropriate figure and then start
changing bits of the registers or else...

CCP1 Module

A central part of this circuitis a 16-bit register CCPR1, which consists of the CCPR1L and CCPR1H registers. Itis used for capturing or comparing with binary number stored in the timer
register TMR1 (TMR1H and TMR1L).

Module CCPR1 Registers

Register CCPR1H Register CCPR1L
A N

bit 15 bit 8 bit7 bit0
Fig. 5-1 CCP1 Module

In Compare mode, if enabled by software, the timer TMR1 reset may occur on match. Besides, the CCP1 module can generate PWM signals of varying frequency and duty cycle.

Bits of the CCP1CON register controls the CCP1 module.

CCP1 in Capture mode
In this mode, the timer register TMR1 (consisting of TMR1H and TMR1L) is copied to the CCP1 register (consisting of CCPR1H and CCPR1L) in the following situations:

« Every falling edge (1 » 0) on the RC2/CCP1 pin;

« Every rising edge (0 » 1) on the RC2/CCP1 pin;

« Every 4th rising edge (0 » 1) on the RC2/CCP1 pin; and
« Every 16th rising edge (0 » 1) on the RC2/CCP1 pin.

The combination of the four bits (CCP1M3 - CCP1M0) of the control register determines which of these events will trigger 16-bit data transfer. In addition, the following conditions must be
met:

« RC2/CCP1 pin must be configured as input; and
* TMR1 module must operate as timer or synchronous counter.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 43/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

1) Fiag bit cCPAIF
F

o
Q Prescaler
-:,E_g : CCPR1
O 11, 1/4, 1116 e A \
= | CCPR1H || CCPRIL |
) O
[
o
3
[T™MR1H |[TMRIL |~ °
CCP1M3 k X
CCP1M2 TMR1
CCPiM1
CCP1MO

Fig. 5-2 CCP1 in Capture mode

The flag bit CCP1IF is set when a capture is made. If it happens and if the CCP1IE bit of the PIE register is set, then an interrupt occurs.

When the Capture mode is changed, an undesirable capture interrupts may be generated. In order to avoid that, both a bit enabling CCP1IE interrupt and flag bit CCP1IF should be cleared
prior to any change occuring in the control register.

Undesirable interrupt may be also generated by switching from one capture prescaler to another. To avoid this, the CCP1 module should be temporarily switched off before changing the
prescaler.

The following program sequence is recommended:

BANKESEL CCP1CON

CLRF CCP1CON ; CONTROL REGISTER IS CLEARED
;CCP1 MODULE IS OFF
MOVLW XX ;NEW PRESCALER MODE IS SELECTED
MOVWE CCP1CON ;NEW VALUE IS LOADED TO THE CONTROL REGISTER

;CCP1 MODULE IS SIMULTANEOUSLY SWITCHED ON

CCP1 in Compare mode

In this mode, the value in the CCP1 register is constantly compared to the value in the timer register TMR1. When a match occurs, the output pin RC2/CCP1 logic state may be changed,
which depends on the state of bits in the control register (CCP1M3 - CCP1M0). The flag-bit CCP1IF will be simultaneously set.

1] Flag bit cCP1IF

Timer T1 CCE'R1
Reset E

T | CCPR1H I CCPR1L |

5 < b
£8 Output Comparator
& q Logic
3]
o
copims |_TMR1H || TMRIL |
TRISC,2 ccPim2 X ~ =
ccPimt
CCPIMO TMR1

Fig. 5-3 CCP1 in Compare mode

To setup CCP1 module to operate in this mode, two conditions must be met:

« Pin RC2/CCP1 must be configured as output; and
« Timer TMR1 must be synchronized with internal clock.

CCP1 in PWM mode

Signals of varying frequency and duty cycle have a wide application in automation. A typical example is a power control circuit whose simple operation is shown in figure 5-4 below. If a logic
zero (0) represents switch-off and logic one (1) represents switchon, the power that the load consumes will be directly proportional to the pulse duration. This ratio is often called Duty Cycle.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 44/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Fig. 5-4 CCP1in PWM mode

Another example, common in practice, is the usage of PWM signals in the circuit for generating signals of arbitrary waveforms, for example, sinusoidal waveform. See figure 5-5 below:

U
PWM signal
before filtration
—_—p
t
I P
RC filter
u
PWM signal
after filtration
EEE—
—»
S

Fig. 5-5 CCP1 in PWM mode with filtration

Devices which operate in this way are often used in practice as switching regulators which control the operation of motors (speed, acceleration, deceleration etc.).

Bits of CCP1CON Register

Pin
RC2/CCP1

TRISC,2

Bits T2CKS1, T2CKPS0
of T2CON register
(Timer T2 prescaler)

Fig. 5-6 PWM module

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 45/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

The figure above shows the block diagram of the CCP1 module setup in PIWM mode. In order to generate a pulse of arbitrary form on its output pin, itis necessary to determine only two
values- pulse frequency and duration.

Period

~+Pulse

4
el

Fig.5-7 PWM Mode
PWM Period
The output pulse period (T) is specified by the PR2 register of the timer TMR2. The PWM period can be calculated using the following equation:
PWM Period(T) = (PR2 +1) * 4Tosc * TMR2 Prescale Value
If the PWM Period (T) is known then, itis easy to determine the signal frequency F because these two values are related by equation F=1/T.
PWM Duty Cycle

The PWM duty cycle is specified by using in total of 10 bits: eight MSbs found in the CCPR1L register and two additional LSbs found in the CCP1CON register (DC1B1 and DC1B0). The
resultis 10-bit number contained in the formula:

Pulse Width = (CCPR1L,DC1B1,DC1B0) * Tosc * TMR2 Prescale Value

The following table shows how to generate PWM signals of varying frequency if the microcontroller uses 20 MHz quartz-crystal (Tosc=50nS).

FREQUENCY [KHZ] 1.22 4.88 19.53 78.12 156.3 208.3
TMR2 Prescaler 16 4 1 1 1 1
PR2 Register FFh FFh FFh 3Fh 1Fh 17h

Table 5-1 PWM Duty Cycle
Atlast, two notes:

« Output pin will be constantly set in case the pulse width is by negligence determined to be larger than PWM period; and
« In this application, the timer TMR2 Postscaler cannot be used for generating longer PWM periods.

PWM Resolution

PWM signal is nothing more than the pulse sequence with varying duty cycle. For one specified frequency (number of pulses per second), there is a limited number of duty cycle
combinations. This number is called resolution measured by bits. For example, a 10-bit resolution will resultin 1024 discrete duty cycles, whereas an 8-bit resolution will resultin 256
discrete duty cycles etc. In relation to this microcontroller, the resolution is specified by the PR2 register. The maximal value is obtained by writing number FFh.

PWM frequencies and resolutions (Fosc = 20MHz):

PWM FREQUENCY 1.22KHZ 4.88KHZ 19.53KHZ 78.12KHZ 156.3KHZ 208.3KHZ
Timer Prescale 16 4 1 1 1 1
PR2 Value FFh FFh FFh 3Fh 1Fh 17h
Maximum Resolution 10 10 10 8 7 6

Table 5-2 PWM Frequencies and Resolutions

PWM frequencies and resolutions (Fosc = 8MHz):

PWM FREQUENCY 1.22KHZ 4.90KHZ 19.61KHZ 76.92KHZ 153.85KHZ 200.0KHZ
Timer Prescale 16 4 1 1 1 1
PR2 Value 65h 65h 65h 19h 0Ch 09h
Maximum Resolution 8 8 8 6 5 5

Table 5-3 PWM Frequencies and Resolutions

CCP1CON Register

Legend

RW Readable/Writable bit
(0} After reset, bit is cleared

Fig. 5-8 CCP1CON Register

P1M1, PA1MO - PWM Output Configuration bits - In all modes, excepting PWM, the P1A pin is Capture/Compare module input. P1B, P1C and P1D pins act as input/output port D pins. In PWM
mode, these bits affect the CCP1 module as shown in the table 5-4 below:

P1M1 P1MO MODE

PWM with single output

0 0 Pin P1A outputs modulated signal.
Pins P1B, P1C and P1D are port D input/output
Full Bridge - Forward configuration
0 1 Pin P1D outputs modulated signal

Pin P1A is active

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 46/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
Pins P1B and P1C are inactive

Half Bridge configuration

1 0 Pins P1A and P1B output modulated signal
PinsP1C and P1D are port D input/output
Full Bridge - Reverse configuration
1 1 Pin P1B outputs modulated signal

Pin P1C is active
Pins P1A and P1D are inactive

Table 5-4 CCP1CON Register

DC1B1,DC1B0 - PWM Duty Cycle Least Significant bits - are only used in PIWM mode in which they represent two least significant bits of a 10-bit number. This number determines PWM
signal’s duty cycle. The rest of bits (8 in total) are stored in the CCPR1L register.

CCP1M3 - CCP1MO0 - CCP1 Mode Select bits determine the mode of the CCP1 module.

CCP1M3 CCP1M2 CCP1M1 CCP1MO MODE
0 0 0 0 Module is disabled (reset)
0 0 0 1 Unused
Compare mode
0 0 1 0
CCP1IF bit is set on match
0 0 1 1 Unused
Capture mode
0 1 0 0
Every falling edge on the CCP1 pin
Capture mode
0 1 0 1
Every rising edge on the CCP1 pin
Capture mode
0 1 1 0
Every 4th rising edge on the CCP1 pin
Capture mode
0 1 1 1
Every 16th rising edge on the CCP1 pin
Compare mode
1 0 0 0
Qutput and CCP1IF bit are set on match
Compare mode
1 0 0 1
Output is cleared and CCPL1IF bit is set on match
Compare mode
1 0 1 0
Interrupt request arrives and bit CCP1IF is set on match
Compare mode
1 0 1 1
Bit CCP1IF is set and timers 1 or 2 registers are cleared
PWM mode
1 1 0 0 Pins P1A and P1C are active-high
Pins P1B and P1D are active-high
PWM mode
1 1 0 1 Pins P1A and P1C are active-high
Pins P1B and P1D are active-low
PWM mode
1 1 1 0 Pins P1A and P1C are active-low
Pins P1B and P1D are active-high
PWM mode
1 1 1 1

Pins P1A and P1C are active-low
Pins P1B and P1D are active-low

Table 5-5 Modes of Operations

CCP2 Module

Excluding the different names of registers and bits, this module is a very good copy of the CCP1 module setup in normal mode (previously discussed). There is only one true difference
between their modes when CCP2 operates in Compare mode.

That difference refers to the timer T1 reset signal. Namely, if A/D converter is enabled at the moment the values of the TMR1 and CCPR2 registers match, the timer T1 reset signal will
automatically start A/D conversion.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 47/155

16/2/2016

Pin
RC2/CCP2

Introduction: World of microcontrollers - Book: PIC Microcontrollers

Output

TRISC.1

Logic

i)

ccPzm3
ccPzmM2
CCcPzM1
ccPzmMo

[TMRIH | TMRIL |

TMR1

Fig. 5-9 CCP2 Module

Similar to the pervious module, this circuit is under control of the bits of the control register. This time, it is the CCP2CON register.

CCP2CON Register

(- | - [DCaB1 | DC2BO |CCP2MS3 CCP2M2|CCPZA1 [CCP2MO)

Fig. 5-10 CCP2CON Register

Legend

(0)

Bit is unimplemented

RW Readable/Writable bit

After reset, bit is cleared

DC2B1,DC2B0 - PWM Duty Cycle Least Significant bits - are only used in PWM mode representing two least significant bits of a 10-bit number. This number determines PWM signal’s duty
cycle. The rest of bits (8 in total) are stored in the CCPR2L register.

CCP2M3 - CCP2MO0 - CCP2 Mode Select bits select CCP2 mode.

CCP2M3 ccpP2m2 ccpP2m1

0 0 0
0 0 0
0 0 1
0 0 1
0 1 0
0 1 0
0 1 1
0 1 1
1 0 0
1 0 0
1 0 1
1 0 1
1 1 X

CCP2MO

0

In short: Setup CCP1 module for PWM operation

Interrupt is generated, CCP2IF bit is set and CCP2 pin is unaffected on match

MODE
Module is disabled (reset)
Unused
Unused
Unused

Capture mode

Every falling edge on the CCP2 pin

Capture mode

Every raising edge on the CCP2 pin

Capture mode

Every 4th rising edge on the CCP2 pin

Capture mode

Every 16th rising edge on the CCP2 pin

Compare mode

Output and CCP2IF bit are set on match

Compare mode

Output is cleared and CCP2IF bit is set on match

Compare mode

Compare mode

CCP2IF bit is set, Timer 1 registers are cleared, A/D conversion is started if the A/D converter is on on match

Table 5-6 CCP2CON Register

In order to setup the CCP module for PWM operation, the following steps should be taken:

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

Disable the CCP1 output pin. It should be configured as input;
Set the PWM period by loading the PR2 register;
Configure the CCP module for the PWM mode by combining bits of the CCP1CON register;
Set the PWM signal’s duty cycle by loading the CCPRA1L register and using bits DC1B1 and DC1BO0 of the CCP1CON register;

Configure and start timer TMR2:

o Clear the TMR2IF interrupt flag bit of the PIR1 register;

PWM mode

48/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

o Set the timer TMR2 prescale value by loading bits T2CKPS1 and T2CKPSO0 of the T2CON register;
o Start the timer TMR2 by setting the TMR20N bit of the T2CON register;

« Enable PWM output pins after one PWM cycle has been finished:

o Wait for the timer TMR2 overflow (TMR2IF bit of the PIR1register is set); and

o Configure the appropriate pin as output by clearing bit of the TRIS register.

CCP1 in Enhanced Mode

The enhanced mode is available on CCP1 only. Basically, this module does not differ from the one previously described and enhancement refers to transmission of PWM signal to the

output pins. Why is it so important? Because the microcontrollers are more frequently used in control systems for electric motors. These devices are not described here, but if you ever have
had a chance to work on development of similar devices, you will recognize elements which, until quite recently, have been used as external ones. Normally, all these elements are now

integrated into the microcontroller and can operate in several different modes.

Single Output PWM Mode

This mode is enabled only in the event thatthe P1M1 and P1MO bits of the CCP1CON register are cleared. In this case, there is only one PWM signal which can be simultaneously available
on a maximum of four different output pins. Besides, the PWM signal may appear in basic or inverted waveform. Signal distribution is determined by the bits of the PSTRCON register, while

it's polarity is determined by the CCP1M1 and CCP1MO bits of the CCP1CON register.

When an inverted outputis in use, the pins are low-active and pulses having the same waveform are always generated in pairs: on the P1A and P1C pins and P1B and P1D pins,

respectively.

CCP1MOD - =
CCPIM1 RC2 STRA M TRISC2
R | ;
=T ok ’
CCP1 e g :
L RDS STRB E TRISDS
L ~
g
PWM RFB 2 STRC TRISD6
= o —=} > :
L STRD a TRISDT
RD7 _
- I " >
PORT / PWM INPUT { OUTPUT

Fig. 5-11 Single Output PWM Mode

Half-Bridge Mode

Pin
RC2/P1A

Pin
RD5/P1B

Pin
RD6/P1C

Pin
RD7/P1D

In this mode, the PWM signal is output on the P1A pin, while at the same time the complementary PWM signal is output on the P1B pin. Such pulses activate MOSFET drivers in Half-Bridge

mode which enable/disable current flow through device.

FET

Driver

Fig. 5-12 Half-Bridge Mode

In relation to this circuit, itis very dangerous to switch on both MOSFET drivers simultaneously. The short circuit caused in that moment will be fatal. In order to avoid that, itis necessary to
provide a short delay between switching drivers on and off. This delay is marked as "td" in figure 5-13 below. The problem is solved by using the PDC0-PDCG6 bits of the PWM1CON register.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

49/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Period

Period

e

Pulse Width

P1A |

P1B

TMR2 = PR2—» TMR2 = PR2 —» TMR2 = PR2 —,

Fig. 5-13 Half Bridge Mode

As shown in figure 5-14, the same mode can be used to activate MOSFET drivers in Full Bridge:

FET
Driver

Fig. 5-14 Activate MOSFET drivers

Full-Bridge Mode

In Full-Bridge mode, all four pins are used as outputs. In practice, this mode is commonly used to run motors, which provides simple and complete control of speed and rotation direction.

There are two such configurations: Full Bridge-Forward and Full Bridge-Reverse.

—

—

FET
Driver

Fig. 5-15 Full-Bridge Mode

Full Bridge - Forward Configuration
In Forward mode the following occurs:

« Logic one (1) appears on the P1A pin (pin is high-active);
« Pulse sequence appears on the P1D pin; and
« Logic zero (0) appears on the P1B and P1C pins (pins are low-active).

Figure below shows the state of the P1A-P1D pins during one full PWM cycle.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

FET
Driver

£

FET
Driver

V+
FET

FET
Driver

50/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

P1A
e Period)
PIB|
Pulse Width |
P1C
P1D

Fig. 5-16 Forward Mode

Full Bridge - Reverse Configuration
The same occurs in Reverse mode, except of the pins functions:

« Logic one (1) appears on the P1C pin (pin is active-high);
* Pulse sequence appears on the P1B pin; and
* Logic zero (0) appears on the P1A and P1D pins (pins are active-low).

iy Period X
 Pulse Width .

P1A

P1B

P1C

P1D

Fig. 5-17 Reverse Mode

PWM1CON Register - STRC PWM Restart Enable bit

« 1 -Upon auto-shutdown, the PWM module is automatically reset, while the ECCPASE bit of the ECCPAS register is cleared.
e 0 - In order to restart PWM module upon auto-shutdown, the ECCPASE bit must be cleared in software.

PDC6 - PDCO - PWM Delay Count bits. 7-digit binary number determines the number of instruction cycles (4*Tosc) added as time delay during the activation of PWM output pins.

Legend

RW Readable/Writable bit
(0) After reset, bit is cleared

Fig. 5-18 PWM1CON Register

PSTRCON Register
STRSYNC - Steering Sync bit determines the moment of PWM pulse steering:

« 1 - Steering occurs upon the PSTRCON has been changed, but only if a PWM waveform is completed; and
¢ 0 - Steering occurs upon the PSTRCON register has been changed. The PWM signal on output pin is immediately changed with no regard to whether the
previous cycle is completed or not. This operation is useful when it is needed to immediately remove a PWM signal from the pin.

STRD - Steering Enable bit D determines the P1D pin function.

¢ 1-P1D pin has the PWM waveform with polarity controlled by the CCP1MO0 and CCP 1M1 bits; and
« 0-Pinis configured as general Port D input/output.

STRC Steering Enable bit C determines the P1C pin function.

¢ 1-P1C pin has the PWM waveform with polarity controlled by the CCP1MO0 and CCP 1M1 bits; and
« 0-Pinis configured as general port D input/output.

STRB - Steering Enable bit B determines the P1B pin function.

¢ 1-P1B pin has the PWM waveform with polarity controlled by the CCP1M0 and CCP1M1 bits; and
« 0-Pinis configured as general port D input/output.

STRA - Steering Enable bit A determines the P1A pin function.

¢ 1-P1D pin has the PWM waveform with polarity controlled by the CCP1MO0 and CCP 1M1 bits; and

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

51/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
* 0-Pinis configured as general port Ainput/output.

ECCPAS Register

ECCPASE[ECCPAS2 |ECCPAST[ECCPASO[PSSAC1 |PSSACO [PSSBD1 | PSSBDO

Legend

RW Readable/Writable bit
(0) After reset, bit iz cleared

Fig. 5-19 ECCPAS Register
ECCPASE - ECCP Auto-Shutdown Event Status bit indicates whether shut-down of CCP module has occurred (Shutdown state):

e 1-CCP module is in Shutdown state; and
¢ 0 - CCP module operates normally.

ECCPAS2 - ECCPASO - ECCP Auto-Shutdown Source Select bits select auto shutdown source:

ECCPAS2 ECCPAS1 ECCPASO SHUTHOWN STATE SOURCE
0 0 0 Shutdown state disabled
0 0 1 Comparator C1 output change
0 1 0 Comparator C2 output change
0 1 1 Comparator C1 or C2 output change
1 0 0 Logic zero (0) on INT pin
1 0 1 Logic zero (0) on INT pin or comparator C1 output change
1 1 0 Logic zero (0) on INT pin or comparator C2 output change
1 1 1 Logic zero (0) on INT pin or comparator C1 or C2 output change

Table 5-7 ECCPAS Register

PSSAC1,PSSACO - Pins P1A, P1C Shutdown State Control bits define logic state on output pins P1A and P1C when CCP module is in shutdown state.

PSSAC1 PSSACO PINS LOGIC STATE
0 0 0
0 1 1
1 X High impedance (Tri-state)

Table 5-8 A&C Logic States

PSSBD1, PSSBDO - Pins P1B, P1D Shutdown State Control bits define logic state on output pins P1B and P1D when CCP module is in shutdown state.

PSSBD1 PSSBDO PINS LOGIC STATE
0 0 0
0 1 1
1 X High impedance (Tri-state)

Table 5-9 B&D Logic States

«— previous chapter | table of contents | next chapter —

Book: PIC Microcontrollers
TOC Introduction Ch.1 Ch.2 Ch.3 Ch4. Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 App.A App.B App.C

Chapter 6: Serial Communication Modules

EUSART

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial /O communication peripheral. Itis also known as Serial Communications Interface
(SCI). It contains all clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independently of the device program execution. As its name
states, apart from the usage of clock for synchronization, this module can also establish asynchronous connection, which makes it irreplaceable in some applications.

For example, in the event that it is difficult or impossible to provide special channels for clock and
data transfer (for example, radio remote control or infrared), the EUSART module presents itselfas a
convenient solution.

Fig. 6-1 Remote Control and Plane

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 52/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
The EUSART system integrated into the PIC16F887 microcontroller has the following features:
o Full-duplex asynchronous transmit and receive;
* Programmable 8- or 9-bit character length;
* Address detection in 9-bit mode;

« Input buffer overrun error detection; and
« Half-duplex communication in synchronous mode (master or slave).

EUSART Asynchronous Mode

The EUSART transmits and receives data using standard non-return-to-zero (NRZ) format. As seen in figure 6-2 below, this mode does not use clock signal, while the data format being
transferred is very simple:

Idle State STOP bit

. " I bit
* START bit & o B e * START bi

i XX

Fig. 6-2 EUSART Asynchronous Mode

Briefly, each data is transferred in the following way:

« Inidle state, data line has high logic level (1);

« Each data transmission starts with START bit which is always a zero (0);

« Each data is 8- or 9-bit wide (LSB bit is first transferred); and

« Each data transmission ends with STOP bit which always has logic level which is always a one (1).

EUSART Asynchronous Transmitter

TXIE CPU
i I
| I
Interrupt TXIF |4 |x|x|x|x |x|x|x |x JTXREG
S Y RESSCHn
B ﬁ S JU UL
1 =
TXEN ____ Register TSR
SPEN
Fosc—» - Txd
ang v
SPBRGH TX9D TRMT

e [xte o

. [orve [1[x[oo] o |

sncte {2 (owon [<[1[aJo o |
v« 1011 | o

SPBRG
Baud Rate Generator

Fig. 6-3 EUSART Asynchronous Transmitter
In order to enable data transmission via EUSART module, itis necessary to configure it to operate as a transmitter. In other words, itis necessary to define the state of the following bits:
TXEN =1 - EUSART transmitter is enabled by setting this bit of the TXSTA register;

SYNC =0 - EUSART is configured to operate in asynchronous mode by clearing this bit of the TXSTA register; and

SPEN =1 - By setting this bit of the RCSTA register, EUSART is enabled and the TX/CK pin is automatically configured as output. If this bit is simultaneously used for some analog function, it

must be disabled by clearing the corresponding bit of the ANSEL register.

The central part of the EUSART transmitter is the shift register TSR which is not directly accessible by the user. In order to start transmission, the module must be enabled by setting the
TXEN bit of the TXSTA register. Data to be sent should be written to the TXREG register, which will cause the following sequence of events:

« Byte will be immediately transferred to the shift register TSR;

« TXREG register remains empty, which is indicated by setting flag bit TXIF of the PIR1 register. If the TXIE bit of the PIE1 register is set, an interrupt will be
generated. Besides, the flag is set regardless of whether an interrupt is enabled or not. Also, it cannot be cleared by software, but by writing new data to the
TXREG register;

« Control electronics "pushes" data toward the TX pin in rhythm with internal clock: START bit (0) ... data ... STOP bit (1);

« When the last bit leaves the TSR register, the TRMT bit of the TXSTA regis ter is automatically set; and

« If the TXREG register has received a new character data in the meantime, the whole procedure is repeated immediately after the STOP bit of the previous
character has been transmitted.

Sending 9-bit data is enabled by setting the TX9 bit of the TXSTA register. The TX9D bit of the TXSTA register is the ninth and Most Significant data bit. When transferring 9-bit data, the

TX9D data bit must be written before writing the 8 least significant bits into the TXREG register. All nine bits of data will be transferred to the TSR shift register immediately after the TXREG

write is complete.

EUSART Asynchronous Receiver

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

53/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

FERR CREN OERR RCIDL

L+
RC7/RX pin N
highe ’ﬁ} | ————— || sTOP

RSR Register

EIEIE
[svc 1 [x[oo] o
Fomcr /1[0 0_
orave[[+ o[1] 0~

Baud Rate Generator

Fig. 6-4 EUSART Asynchronous Receiver
Similar to the activation of EUSART transmitter, in order to enable the receiver it is necessary to define the following bits:
CREN =1 - EUSART receiver is enabled by setting this bit of the RCSTA register;
SYNC =0 - EUSART is configured to operate in asynchronous mode by clearing this bit stored in the TXSTA register; and

SPEN =1 - By setting this bit of the RCSTA register, EUSART is enabled and the RX/DT pin is automatically configured as input. If this bit is simultaneously used for some analog function, it
must be disabled by clearing the corresponding bit of the ANSEL register.

When this firstand necessary step is accomplished and START bit is detected, data is transferred to the shift register RSR through the RX pin. When the STOP bit has been received, the
following occurs:

¢ Data is automatically transferred to the RCREG register (if empty);

« The flag bit RCIF is set and an interrupt, if enabled by the RCIE bit of the PIE1 register, occurs. Similar to transmitter, the flag bit is cleared by software only,
i.e. by reading the RCREG register. Bear in mind that this is a two character FIFO memory (first-in, first-out) which allows reception of two characters
simultaneously;

« If the RCREG register is occupied (contains two bytes) and the shift register detects new STOP bit, the overflow bit OERR will be set. In this case, a new
coming data is lost, and the OEER bit must be cleared by software. It is done by clearing and resetting the CREN bit.

Note: it is not possible to receive new data as far as the OERR bit is set;
« [If the STOP bit is zero (0), the FERR bit of the RCSTAregister detecting receive error will be set; and
« To receive 9-bit data it is necessary to set the RX9 bit of the RCSTA register.

Receive Error Detection

There are two types of errors which the microcontroller can automatically detect, The first one is called Framing error and occurs when the receiver does not detect the STOP bit at the
expected time. Such error is indicated via the FERR bit of the RCSTA register. If this bit is set, it means that the last received data may be incorrect. Itis important to know several things:

« A Framing error does not generate an interrupt by itself;

« If this bit is set, the last received data has an error;

« A framing error (bit set) does not prevent reception of new data;

+ The FERR bit is cleared by reading received data, which means that check must be done before data reading; and

« The FERR bit cannot be cleared by software. If needed, it can be cleared by clearing the SPEN bit of the RCSTA register. It will simultaneously cause reset of

the whole EUSART system.

Another type of error is called Overrun Error. The receive FIFO can hold two characters. An overrun error will be generated if the third character is received. Simply, there is no space for
another one byte and an error is unavoidable! When this happens the OERR bit of the RCSTA register is set. The consequences are the following:

« Data already stored in the FIFO registers (two bytes) can be normally read;

« No additional data will be received until the OERR bit is cleared; and

« This bit is not directly accessed. To clear it, it is necessary to clear the CREN bit of the RCSTA register or to reset the whole EUSART system by clearing the
SPEN bit of the RCSTA register.

Receiving 9-bit Data

In addition to receiving standard 8-bit data, the EUSART system supports 9-bit data reception. On the transmit side, the ninth bit is "attached" to the original byte just before the STOP bit. On
the receive side, when the RX9 bit of the RCSTA register is set, the ninth data bit will be automatically written to the RX9D bit of the same register. When this byte is received, one should
take care of how to read its bits- the RX9D data bit must be read before reading the 8 least significant bits of the RCREG register. Otherwise, the ninth data bit will be automatically cleared.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 54/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

|RSR Register

RCREG Register

Fig. 6-5 Receiving 9-bit Data

Address Detection

When the ADDEN bit of the RCSTAregister is set, the EUSART module is able to receive only 9-bit data, whereas all 8-bit data will be ignored. Although it seems like a restriction, such
modes enable serial communication between several microcontrollers. The principle of operation is simple. The master device sends 9-bit data which represents the address of one

microcontroller. All slave microcontrollers sharing the same transmission line, receive this data. Of course, each of them must have the ADDEN bit set because it enables address detection.

ADDEN =1 ADDEN =1 ADDEN =1

2w e —

" 9.bit address

EUSART 3

Upon receiving this data each slave checks if that address matches its own. Software, in which address match occurs, must disable address detection by clearing its ADDEN bit. The master
device keeps on sending 8-bit data. All data passing through the transmission line will be received by "recognized" EUSART module only. Upon receiving the last byte, the slave device

should setthe ADDEN bitin order to enable new address detection.

ADDEN =0

ADDEN =1 ADDEN =1

Fig. 6-7 Sending Data

TXSTA Register

| CSRC | TX9 | TXEN [SYNC [SENDB [BRGH | TRMT | TX9D |

Legend

RIW Readable/Writable bit

R Readable bit

(0} After reset, bit is cleared
{1 After reset, bit is set

Fig.6-8 TXSTA Register

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

55/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

CSRC - Clock Source Select bit - determines clock source. Itis used only in synchronous mode.

* 1 -Master mode. Clock is generated intemnally from Baud Rate Generator; and
¢ 0 - Slave mode. Clock is generated from external source.

TX9 - 9-bit Transmit Enable bit

* 1 -9-bit data transmission via EUSART system; and
¢ 0 - 8-bit data transmission via EUSART system.

TXEN - Transmit Enable bit

« 1 - Transmission enabled; and
¢ 0 - Transmission disabled.

SYNC - EUSART Mode Select bit

« 1-EUSART operates in synchronous mode; and
¢ 0 - EUSART operates in asynchronous mode.

SENDB - Send Break Character bit is only used in asynchronous mode and only in case itis required to observe LIN bus standard.

« 1 -Sending Break character is enabled; and
« 0 - Break character transmission is completed.

BRGH - High Baud Rate Select bit determines baud rate in asynchronous mode. It does not affect EUSART in synchronous mode.

« 1-EUSART operates at high speed; and
* 0-EUSART operates at low speed.

TRMT - Transmit Shift Register Status bit

¢ 1-TSR register is empty; and
* 0-TSR register is full.

TX9D - Ninth bit of Transmit Data can be used as address or parity bit.

RCSTA Register

Legend

RIW Readable/Writable bit

R Readable bit

(0} After reset, bit is cleared
(x} After reset, bit is unknown

Fig.6-9 RCSTA Register
SPEN - Serial Port Enable bit

« 1 - Serial port enabled. RX/DT and TX/CK pins are automatically configured as input and output respectively; and
« 0 - Serial port disabled.

RX9 - 9-bit Receive Enable bit

« 1-Receiving 9-bit data via EUSART system; and
* 0 -Receiving 8-bit data via EUSART system.

SREN - Single ReceiveEnable bit is used only in synchronous mode when the microcontroller operates as master.

« 1 -Single receive enabled; and
« 0 - Single receive disable.

CREN - Continuous Receive Enable bit acts differently depending on EUSART mode.
Asynchronous mode:

« 1 -Receiver enabled; and
« 0 - Receiver disabled.

Synchronous mode:

« 1 -Enables continuous receive until the CREN bit is cleared; and
* 0 - Disables continuous receive.

ADDEN - Address Detect Enable bit is only used in address detect mode.

¢ 1 -Enables address detection on 9-bit data receive; and
¢ 0 -Disables address detection. The ninth bit can be used as parity bit.

FERR - Framing Error bit

« 1-0n receive, Framing Error is detected; and
¢ 0 - No framing error.

OERR - Overrun Error bit.

* 1-0n receive, Overrun Error is detected; and
* 0 - No overrun error.

RX9D - Ninth bit of Received Data can be used as address or parity bit.

EUSART Baud Rate Generator (BRG)

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

If you carefully look at the asynchronous EUSART receiver or transmitter diagram, you will see, in both cases, that clock signal from the local timer BRG is used for synchronization. The
same clock source is also used in synchronous mode.

This timer consists of two 8-bit registers comprising one 16-bit register.

Baud Rate Generator Registers

SPBRGH Register SPBRG Register
A, A

bit 15 bit8 bit7 bit 0

Fig. 6-10 EUSART Baud Rate Generator (BRG)
A number written to these two registers determines the baud rate. Besides, both the BRGH bit of the TXSTA register and the BRGH16 bit of the BAUDCTL register affect clock frequency.

The formula used to determine Baud Rate is given in the table below.

BITS BRG /| EUSART MODE BAUD RATE FORMULA
SYNC BRG1G BRGH
0 0 0 8-bit / asynchronous Fosc / [64 (n + 1)]
0 0 1 8-bit / asynchronous Fosc / [16 (n + 1)]
0 1 0 16-bit / asynchronous Fosc / [16 (n + 1)]
0 1 1 16-bit / asynchronous Fosc / [4 (n + 1)]
1 0 X 8-bit / asynchronous Fosc / [4 (n + 1)]
1 1 X 16-bit / asynchronous Fosc / [4 (n + 1)]

Table 6-1 Baud Rate

The following tables contain values that should be written to the 16-bit register SPBRG and assigned to the SYNC, BRGH and BRGH16 bits in order to obtain some of the standard baud

rates.

The formulas used to determine the Baud Rate are:

Fosc
. _ Fosc Desired Baud Rate
Desired Baud Rate = o p e R I SPBRG - 1) SEBRGHSEBROW—_—

Calc.Baud Rate - Desired Baud Rate

Error [%] =
%l Desired Baud Rate

SYNC =0, BRGH =0, BRG16=0

Fosc = 20 MHz Fosc = 18.432 MHz || Fosc = 11.0592 MHz | Fosc = 11.0592 MHz

Baud Rate

300
1200
2400
9600
10417
19.2k
57.8k
115.2k

Actual | Error

1221 1.73
2404 0.16
9470 -1.36
10417 0.00
19.53 1.73

1200 0.00 239
2400 0.00 119
9600 0.00 29
10286 -1.26 27
19.2 0.00 14
57.6k 0.00 7

1200 0.00
2400 0.00
9600 0.00
10165 -2.42
19.2 0.00
57.6 0.00

1202 0.16 103
2404 0.16 51
9615 0.16 12
10417 0.00 11

Baud Rate

300
1200
2400
9600

10417
19.2k
57.8k

115.2k

300 0.16
1202 0.16
2404 0.16

10417 0.00

300 0.16
1202 0.16
2404 0.16

10417 0.00

300 0.16 51
1202 016 12

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

57/155

Introduction: World of microcontrollers - Book: PIC Microcontrollers

SYNC =0, BRGH=1, BRG16=0

Fosc = 20 MHz Fosc = 18.432 MHz Fosc = 8 MHz
Baud Rafe

Actual

Rate
300 - 4 2 = = = - - E 5 = .
1200 = = 2 - S 5 5 = i = 2 S
2400 - - - . - - - - . 2404 0.16 207
9600 9615 0.16 129 | 9600 0.00 119 | 9600 000 71 |9615 0.16 51
10417 | 10417 0.00 119 |10378 -0.37 110 |10473 053 65 |[10417 0.00 47
19.2k | 19.23k 0.16 64 19.2 000 59 |19.2k 0.00 35 [19231 0.16 25
57.6k |56.82k -1.36 21 |576k 000 19 |57.6k 0.00 11 |55556 -3.55 8
115.2k |113.64k -1.36 10 |1152k 0.00 9 |[1152k 0.00 5 . - .

Berid Rate Actual |Error

Rate | % ;
300 - - - - - - - - - 300 016 207
1200 1202 016 207 1200 0.00 191 1202 016 103 1202 0.16 51
2400 2404 016 103 2400 0.00 95 2404 0.16 51 2404 0.16 25
9600 9615 0.16 25 9600 0.00 23 9615 0.16 12 - - -
10417 10417 0.00 23 10473 0.00 1 10417 0.00 11 10417 0.00 5
19.2k 19.23k 0.16 12 19.2 0.00 11 - - - - - -
57.6k - - - 57.6k 0.00 3 - - - - - -
115.2k - - - 115.2k 0.00 1 - - - - - -

Baud Rate SPBRG
Actual o
Rate
R ; 300 0.00 -0.02
1200 1200 -0.03 1041 1200 0.00 959 1200 0.00 575 1189 -0.08 416
2400 2399 -0.03 520 2400 0.00 479 2400 0.00 287 2404 016 207
9600 9615 0.16 129 9600 0.00 119 9600 0.00 71 9615 0.16 51
10417 10417 0.00 119 |[10378 -0.37 110 [10473 0.53 65 10417 0.00 47
19.2k 19.23k 0.16 64 19.2k 0.00 59 19.2k 0.00 35 19.23k 0.16 25
57.6k 56.818 -1.36 21 57.6k 0.00 19 57.6k (.00 11 55556 -3.55 a8
115.2k |113.636 -1.36 10 115.2k 0.00 9 115.2k 0.00] - - -

Baud Rate

value
300 300.1 0.04 832 300 0.00 767 |299.8 -0.108 416 |3005 0.16 207
1200 1202 0.16 207 1200 0.00 1M 1202 0.16 103 1202 0.16 51
2400 2404 016 103 2400 0.00 95 2404 0.16 51 2404 0.16 25
9600 9615 0.16 25 9600 0.00 23 9615 0.16 12 - - -
10417 | 10417 0.00 23 10473 0.53 21 10417 0.00 11 10417 0.00 5
19.2k 19.23k 0.16 12 19.2k Q.00 11 - - - - - -
57.6k - - - 57.6 0.00 3 - - - - - -
115.2k - - - 1152k 0.00 1 - - - - - -

Rade fsde Actual Err_c:r valie Actual S\f’a?LiG
o o5 -

Rate (dec.) Rate (dec)

300 300 0.00 16665 | 300 0.00 15359 | 300 0.00 9215 300 0.00 6666
1200 1200 -0.01 4166 | 1200 0.00 3839 | 1200 0.00 2303 | 1200 -0.02 1666
2400 2400 0.02 2082 | 2400 0.00 1919 | 2400 0.00 1151 2401 0.04 832
9600 9597 -0.03 520 9600 0.00 479 9600 0.00 287 9615 016 207
10417 10417 0.00 479 (10425 0.08 441 10433 016 264 |10417 O 191
19.2k 19.23k 0.16 259 19.2k 0.00 239 19.2k 0.00 143 |19.23k 0.16 103
57.6k |57.47k -0.22 86 57.6k 0.00 79 57.6k 0.00 47 57.14k -0.79 34
115.2k |116.3k 0.95 42 115.2k 0.00 39 115.2k 0.00 23 1176k 2.12 16

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

58/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

SYNC =0 BRGH=1

Baud Rate

300 300 0.01 3332 300
1200 1200 0.04 832 1200
2400 2308 0.08 416 | 2400
9600 9615 0.16 103 | 9600
10417 | 10417 0.00 95 10473
19.2k |19.23k 0.16 51 19.2k
57.6k |58.82k 2.12 16 57.6k
115.2k |111.1k -3.55 8 115.2k

0.00
0.00
0.00
0.00
0.53
0.00
0.00
0.00

BRG16 = 1 or SYNC = 1, BRGH16 = 1

Actual
Rate

299.9
1199
2404
9615
10417
19.23k
55.56k

-9;.55

Actual

300.1 0.04
1202 0.16
2404 0.16
29615 0.16
10417 0.00
19.23k 0.16

Table 6-2 Determining Baud Rate

BAUDCTL Register

Legend

- Bit is unimplemented
R/W ReadableWritable bit

R Readable bit
(0 After reset, bit is cleared

(1) After reset, bit is set

Fig. 6-11 BAUDCTL Register

ABDOVF - Auto-Baud Detect Overflow bit is only used in asynchronous mode during baud rate detection.

¢ 1 - Auto-baud timer overflowed; and
¢ 0 - Auto-baud timer did not overflow.

RCIDL - Receive Idle Flag bit is only used in asynchronous mode.

« 1 -Receiver is idle; and
¢ 0 - START bit has been received and receiving is in progress.

SCKP - Synchronous Clock Polarity Select bit acts differently depending on EUSART mode.

Asynchronous mode:

« 1 -Transmit inverted data to the RC6/TX/CK pin; and
¢ 0 - Transmit non-inverted data to the same pin.

Synchronous mode:

« 1 - Synchronization on rising edge of the clock; and
« 0 - Synchronization on falling edge of the clock.

WUE Wake-up Enable bit

« 1 -Receiver waits for a falling edge on the RC7/RX/DT pin to start waking up the microcontroller from sleep mode; and

« 0 - Receiver operates normally.

ABDEN - Auto-Baud Detect Enable bit is used in asynchronous mode only.

« 1 - Auto-baud detect mode is enabled. Bit is automatically cleared on baud rate detect; and

¢ 0 - Auto-baud detect mode is disabled.
In Short:

Sending data via asynchronous EUSART communication:

N o o~ W N =

. Transmission starts by writing 8-bit data to the TXREG register.

Receiving data via asynchronous EUSART communication:

. On 9-bit data receive, the RX9 bit of the RCSTA register should be set;

o g r WN =

stored in this register; and
Received 8-bit data stored in the RCREG register should be read.

~

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

. Data receive should be enabled by setting the CREN bit of the RCSTA register;
. The RCSTA register should be read to get information on possible errors which have occurred during transmission. On 9-bit data receive, the ninth bit will be

. Baud Rate should be set by using bits BRGH (TXSTA register) and BRG16 (BAUDCTL register) and registers SPBRGH and SPBRG;
. The SYNC bit (TXSTA register) should be cleared and the SPEN bit should be set (RCSTA register) in order to enable serial port;
. If it is necessary the data receive causes an interrupt, both the RCIE bit of the PIE1 register and bits GIE and PEIE of the INTCON register should be set;

. The desired baud rate should be set by using bits BRGH (TXSTA register) and BRG16 (BAUDCTL register) and registers SPBRGH and SPBRG;
. The SYNC bit (TXSTA register) should be cleared and the SPEN bit should be set (RCSTA register) in order to enable serial port;

. On 9-bit data transmission, the TX9 bit of the TXSTA register should be set;
. Data transmission is enabled by setting bit TXEN of the TXSTA register. Bit TXIF of the PIR1 register is automatically set;
. If needed the bit TXEN causes an interrupt, the GIE and PEIE bits of the INTCON register should be set;
. On 9-bit data transmission, value of the ninth bit should be written to the TX9D bit of the TXSTA register; and

59/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Setting Address Detection Mode:

. Baud Rate should be set by using bits BRGH (TXSTA register) and BRG16 (BAUDCTL register) and registers SPBRGH and SPBRG;

. The SYNC bit (TXSTA register) should be cleared and the SPEN bit should be set (RCSTA register) in order to enable serial port;

. If it is necessary the data receive causes an interrupt, the RCIE bit of the PIE1 bit as well as bits GIE and PEIE of the INTCON register should be set;
. The RX9 bit of the RCSTA register should be set;

. The ADDEN of the RCSTA register should be set, which enables a data to be interpreted as address;

. Data receive is enabled by setting the CREN bit of the RCSTA register;

. Immediately upon 9-bit data is received, the RCIF bit of the PIR1 register will be automatically set. If enabled, an interrupt occurs;

© N O O A~ WON =

. The RCSTA register should be read in order to get information on possible errors which have occurred during transmission. The ninth bit RX9D is always
set; and

©

Received 8-bits stored in the RCREG register should be read. It should be checked whether the combination of these bits matches the predefined address.
If the match occurs, it is necessary to clear the ADDEN bit of the RCSTA register, which enables further 8-bit data receive.

Master Synchronous Serial Port Module

MSSP module (Master Synchronous Serial Port) is a very useful, but at the same time one of the most complex circuit within the microcontroller. It enables high speed communication
between a microcontroller and other peripherals or microcontroller devices by using few input/output lines (maximum two or three). Therefore, it is commonly used to connect the
microcontroller to LCD displays, A/D converters, serial EEPROMSs, shift registers etc. The main feature of this type of communication is that it is synchronous and suitable for use in systems
with a single master and one or more slaves. A master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices
may in that way eliminate the internal clock generation circuitry. The MSSP module can operate in one of two modes:

* SPI mode (Serial Peripheral Interface)
* I2C mode (Inter-Integrated Circuit)

As seen in figure 6-12 below, one MSSP module represents only a half of the hardware needed to establish serial communication, while another half is stored in the device the data is
exchanged with. Even though the modules on both ends of the line are the same, their modes are essentially different depending on whether they operate as a Master or a Slave:

If the microcontroller to be programmed controls another device or circuit (peripherals), it should operate as a master device. A module defined as such will generate clock when needed, i.e.
only when data receive and transmit is required by the software. It depends on the master whether the connection will be established or not. Otherwise, if the microcontroller to be
programmed is a part of some peripheral which belongs to some more complex device (for example PC), then it should operate as a slave device. As such, it always has to wait for request
for data transfer from master device.

- rocessor 1 UL E:> Processor 2

nn s

Master @nnnn | Slave

rocessor 1 TUUUTUUUTIn B Processor 2

@ n nn »

Slave

Master

Fig.6-12 MSSP Module

SPI Mode

The SPI mode allows 8 bits of data to be transmitted and received simultaneously using 3 input/output lines:

« SDO - Serial Data Out - transmit line;
« SDI - Serial Data In - receive line; and
¢ SCK - Serial Clock - synchronization line.

In addition to these three lines, if the microcontroller exchanges data with several peripheral devices, the forth line (SS) may be also used. Refer to figure 6-13 below.

SS - Slave Select - is additional pin used for specific device selection. Itis active only in case the microcontroller is in slave mode, i.e. when the external - master device requires data
exchange.

When operating in SPI mode, MSSP module uses in total of 4 registers:

* SSPSTAT status register;

* SSPCON control register;

« SSPBUF buffer register; and

+ SSPSR shift register (not directly available)

The first three registers are writable/readable and can be changed at any moment, while the forth register, since not available, is used for converting data into "serial" format.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 60/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Selected peripheral
device to accomplish
SPl communication with

1 oI [|ss= _ §8=1
Master <o) Slave| | (] Slave
SPI SPI . SPI

58 R

iz L]

A
Y

Fig. 6-13 SPI Mode
As seen in figure 6-14, the central part of the SPI module consists of two registers connected to pins for receive, transmit and synchronization.

Shift register (SSPRS) is directly connected to the microcontroller pins and used for data transmission in serial format. The SSPRS register has its input and output and shifts the data in and
out of device. In other words, each bit appearing on input (receive line) simultaneously shifts another bit toward output (transmit line).

The SSPBUF register (Buffer) is a part of memory used to temporarily hold the data written to the SSPRS until the received data is ready. Upon receiving all 8 bits of data, that byte is moved
to the SSPBUF register. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF
register during transmission/reception of data will be ignored. Since having been the most accessed, this register is considered the most important from the programmers’ point of view.

Namely, if mode settings are neglected, data transfer via SPI actually means to write and read data from this register, while another "acrobatics" such as moving registers are automatically
performed by hardware.

— _JUUUL
sSPBUF | 5| — —» | K| sspBUF
4 4

SSPSR o4 —+——{ |%%2 ssPsr %4

sSbo

o>

Fig. 6-14 SPI Mode

In short:
Prior to initializing the SPI, it is necessary to specify several options:

+ Master mode (SCK pin is the clock output);

+ Slave mode (SCK pin is the clock input);

« Data input phase- middle or end of data output time (SMP bit);
¢ Clock edge (CKE bit);

« Baud Rate (only in Master mode); and

« Slave select mode (Slave mode only).

Step 1.

Data to transmit should be written to the buffer register SSPBUF. Immediately after that, if the SPI module operates in master mode, the microcontroller will c P U
automatically perform the following steps 2, 3 and 4. If the SPI module operates as Slave, the microcontroller will not perform these steps until the SCK pin detects

clock signal. ‘

Fig. 6-15 Step 1

SSPBUF

Step 2.
This data is now moved to the SSPSR register and the SSPBUF register is not cleared. SSPBU F

Fig. 6-16 Step 2 ‘

SSPSR

Step 3.
Synchronized with clock signal, this data is shifted to the output pin (MSB bit first) while the register is simultaneously being filled with bits through input’ SSPSR ‘
pin. In Master mode, the microcontroller itself generates clock, while the Slave mode uses external clock (pin SCK).

Fig. 6-17 Step 3

Step 4.
The SSPSR register is full once the 8 bits of data have been received. Itis indicated by setting the BF and SSPIF bits. The received data (that SS PBU F
byte) is automatically moved from the SSPSR register to the SSPBUF register. Since data transfer via serial communication is performed

automatically, the rest of the program is normally executed while data transfer is in progress. In that case, the function of the SSPIF bit is to

|
~
generate interrupt when one byte transmission is completed. ’ _&

Fig.etssers | SOGPSR - SSPIF

Step 5.
Atlast, the data stored in the SSPBUF register is ready for use and moved to any register available.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 61/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Fig. 6-19 Step 5 c P U
*

SSPBUF

I)C mode

12C mode (Inter IC Bus) is especially suitable when the microcontroller and integrated circuit, which the microcontroller should exchange data with, are within the same device. Itis commonly
about another microcontrollers or specialized, cheap integrated circuits belonging to the new generation of so called "smart peripheral components" (memories, temperature sensors, real-
time clocks etc.)

Similar to serial communication in SPI mode, data transfer in I°C mode is synchronous and bidirectional. This time only two pins are used for data transfer. These are the SDA (Serial Data)
and SCL (Serial Clock) pins. The user must configure these pins as inputs or outputs through the TRISC bits.

Perhaps itis not directly visible. By observing particular rules (protocols), this mode enables up to 122 different components to be simultaneously connected in a simple way by using only
two valuable I/O pins. Briefly, everything works as follows: Clock necessary to synchronize the operation of both devices is always generated by the master device (microcontroller) and its
frequency directly affects baud rate. There are protocols allowing maximum 3,4 MHz clock frequency (so called high-speed I?C bus), but the clock frequency of the most frequently used
protocol is limited to 100 KHz. There is no limitin case of minimal frequency.

When master and slave components are synchronized by the clock, every data exchange is always initialized by master. Once the MSSP module has been enabled, it waits for a Start
condition to occur. First the master device sends the START bit (logic zero) through the SDA pin, then the 7-bit address of the selected slave device, and finally, the bit which requires data
write (0) or read (1) to that device. Accordingly, following the start condition, the eight bits are shifted into the SSPSR register. All slave devices share the same transmission line and all will
simultaneously receive the first byte, but only one of them has the address to match.

e — Address 2
T LI N SDA

JUNMARA scL

Address 1 Address 2 Address 3

Fig. 6-20 Master and Slave Configuration

Once the first byte has been sent (only 8-bit data are transmitted), master goes into receive mode and waits for acknowledgment from the receive device that address match has occurred. If
the slave device sends acknowledge data bit (1), data transfer will be continued until the master device (microcontroller) sends the Stop bit.

This is the simplest explanation of how two components communicate. If needed, this microcontroller is able to control more complicated situations when 1024 different components, shared
by several different master devices, are connected. Such devices are rarely used in practice and there is no need to discuss them at greater length.

/TN .
| 58 T

[BYTE n-1 7/6!5(4/3/2|1|0| | spa I"
\ l J\DDﬁESS {J\tkﬂnw‘ﬂ‘lg! I w |
Data Bit (1) \ DATA n
START bit (0) RW (g = WRITE ll
1= READ Ackpowisige (4} STOP bit (1)
Data Bit

0L N AR
| apomess| || evret || eviez || evies || [_evren []]

Data Transfer Start —b’ Data Transfer End

Fig. 6-21 Data Transfer

Figure below shows the block diagram of the MSSP module in I°C mode.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 62/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

MICU

¥ &

SSPBUF

Fig. 6-22 MSSP Block Diagram in I’C Mode

The MSSP module uses six registers for I°C operation. Some of them are shown in figure above:

« SSPCON;
¢ SSPCONZ2;
« SSPSTAT;
* SSPBUF;
¢ SSPSR; and
« SSPADD.
SSPSTAT Register
 sMP_| CKE | DA | P | S | RW | UA | BF |
Legend
RW Readable/Mritable bit
R Readable bit
(0) After reset, bit is cleared
Fig. 6-23 SSPSTAT Register
SMP Sample bit

SPI master mode - This bit determines input data phase.

« 1-Logic state is read at end of data output time; and
« 0 - Logic state is read in the middle of data output time.

SPI slave mode This bit must be cleared when SPlis used in Slave mode.
I’C mode (master or slave)

« 1-Slew rate control disabled for standard speed mode (100kHz); and
¢ 0 - Slew rate control enabled for high speed mode (400kHz).

CKE - Clock Edge Select bit selects synchronization mode.
CKP =0:

« 1-Datais transmitted on rising edge of clock pulse (0 - 1); and
« 0-Datais transmitted on falling edge of clock pulse (1 - 0).

CKP =1:

« 1-Datais transmitted on falling edge of clock pulse (1 - 0); and
* 0-Datais transmitted on rising edge of clock pulse (0 - 1).

D/A - Data/Address bit is used in I’°C mode only.
« 1 -Indicates that the last byte received or transmitted was data; and

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

« 0 - Indicates that the last byte received or transmitted was address.

P - Stop bit is used in I°C mode only.

¢ 1-STOP bit was detected last; and
« 0-STOP bit was not detected last.

S - Start bit is used in I?°C mode only.

¢ 1-START bit was detected last; and
« 0-START bit was not detected last.

R/W - Read Write bit is used in I°C mode only. This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop

bit or not ACK bit.
In I’C slave mode
¢ 1-Data read; and
¢ 0 - Data write.
In ’C master mode
e 1 -Transmit is in progress; and
¢ 0 - Transmit is not in progress.
UA - Update Address bit is used in 10-bit I’C mode only.
¢ 1-Indicates that it is necessary to update the address in the SSPADD register; and

¢ 0-Address in the SSPADD register is correct and does not need to be updated.
BF Buffer Full Status bit

During data receive (in SPl and I°C modes)

« 1-Receive complete. The SSPBUF register is full; and
« 0 - Receive not complete. The SSPBUF register is empty.
During data transmit (in I’C mode only)

« 1 -Data transmit in progress (does not include the bits ACK and STOP); and
* 0 - Data transmit complete (does not include the bits ACK and STOP).

SSPCON Register

Legend

R/W Readable/Writable bit
(0) After reset, bit is cleared

Fig. 6-24 SSPCON Register
WCOL Write Collision Detect bit

¢ 1-Collision detected. A write to the SSPBUF register was attempted while the I°C conditions were not valid for a transmission to start; and
« 0 - No collision.

SSPOV Receive Overflow Indicator bit

« 1-A new byte is received while the SSPSR register still holds the previous data. Since there is no space for new data receive, one of these two bytes must be
cleared. In this case, data in SSPSR is lost; and
¢ 0 - Serial data is correctly received.

SSPEN - Synchronous Serial Port Enable bit determines the microcontroller pins function and initializes MSSP module:
In SPImode

« 1 -Enables MSSP module and configures pins SCK, SDO, SDI and SS as the source of the serial port pins; and
« 0 - Disables MSSP module and configures these pins as 1/O port pins.

In [*)C mode
¢ 1-Enables MSSP module and configures pins SDA and SCL as the source of the serial port pins; and
¢ 0 - Disables MSSP module and configures these pins as 1/0O port pins.

CKP - Clock Polarity Select bit is not used in I°C master mode.
In SPImode

« 1 - Idle state for clock is a high level; and
* 0 - Idle state for clock is a low level.

In I°C slave mode
« 1-Enables clock; and
« 0 -Holds clock low. Used to provide more time for data stabilization.
SSPM3-SSPMO0 - Synchronous Serial Port Mode Select bits. SSP mode is determined by combining these bits:

SSPM3 SSPM2 SSPM1 SSPMO MODE
0 0 0 0 SPI master mode, clock = Fosc/4
0 0 0 1 SPI master mode, clock = Fosc/16

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

64/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

0 0 1 0 SPI master mode, clock = Fosc/64

0 0 1 1 SPI master mode, clock = (output TMR)/2

0 1 0 0 SPI slave mode, SS pin control enabled

0 1 0 1 SPI slave mode, SS pin control disabled, SS can be used as I/O pin

0 1 1 0 12C slave mode, 7-bit address used

0 1 1 1 12C slave mode, 10-bit address used

1 0 0 0 12C master mode, clock = Fosc / [4(SSPAD+1)]

1 0 0 1 Mask used in I2C slave mode

1 0 1 0 Not used

1 0 1 1 I12C controlled master mode

1 1 0 0 Not used

1 1 0 1 Not used

1 1 1 0 12C slave mode, 7-bit address used,START and STOP bits enable interrupt
1 1 1 1 12C slave mode, 10-bit address used,START and STOP bits enable interrupt

Table 6-3 Synchronous Serial Port Mode Select Bits

SSPCON2 Register

[GCEN_|ACKSTAT| ACKDT | ACKEN | RCEN | PEN | RSEN | SEN |

Legend

RW Readable/Writable bit
R Readable bit
{0) After reset, bit is cleared

Fig. 6-25 SSPCON2 Register
GCEN - General Call Enable bit
In I°C slave mode only

« 1 - Enables interrupt when a general call address (0000h) is received in the SSPSR; and
¢ 0 - General call address disabled.

ACKSTAT - Acknowledge Status bit
In [*C Master Transmit mode only

« 1-Acknowledge was not received from slave; and
* 0 - Acknowledge was received from slave.

ACKDT - Acknowledge data bit
In I°C Master Receive mode only

« 1 -Not Acknowledge; and
* 0 - Acknowledge.

ACKEN - Acknowledge condition Enable bit
In [2)C Master Receive mode

« 1 - Initiate acknowledge condition on SDA and SCL pins and transmit ACKDT data bit. It is automatically cleared by hardware; and
* 0 - Acknowledge condition is not initiated.

RCEN - Receive Enable bit
In [)C Master mode only

« 1 - Enables data receive in I)C mode; and
* 0 - Receive disabled.

PEN - STOP condition Enable bit
In [)C Master mode only

« 1 - Initiates STOP condition on pins SDA and SCL. Afterwards, this bit is automatically cleared by hardware; and
¢ 0 - STOP condition is not initiated.

RSEN - Repeated START Condition Enabled bit
In I)C master mode only

« 1 -Initiates START condition on pins SDA and SCL. Afterwards, this bit is automatically cleared by hardware; and
« 0 -Repeated START condition is not initiated.

SEN - START Condition Enabled/Stretch Enabled bit
In [)C Master mode only

« 1 -Initiate START condition on pins SDA and SCL. Afterwards, this bit is automatically cleared by hardware; and
¢ 0 - START condition is not initiated.

I2C in Master Mode

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

65/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

The most common case is when the microcontroller operates as a master and the peripheral component as a slave. This is why this book covers just this mode. Itis also considered that the
address consists of 7 bits and device contains only one microcontroller (one master device).

In order to enable MSSP module in this mode, itis necessary to do the following:

Set baud rate (SSPADD register), turn off slew rate control (by setting the SMP bit of the SSPSTAT register) and select master mode (SSPCON register). After the preparation has been
finished and module has been enabled (SSPCON register: SSPEN bit), one should wait for internal electronics to signal that everything is ready for data transmission, i.e. the SSPIF bit of the

PIR1 register is set.

This bit should be cleared by software and after that, the microcontroller is ready to start "communication” with peripherals.

Data Transmission in I’C Master Mode

SSPSTAT |1 | «

SSPADD X{x|x|x \x|x xl \/ B RS

Slew Rate

SSPCON l 100 0] v Master Mode

sspcoN [T BN v Enavie

PIR1 | 1 | V]

Fig. 6-27 I*’C in Master Mode

Each clock condition on the SDA pin starts with logic zero (0) which appears upon setting the SEN bit of the SSPCONZ2 register. Even enabled, the microcontroller has to wait a certain time
before it starts communication. Itis the so called "Start condition" during which internal preparations and checks are performed. If all conditions are met, the SSPIF bit of the PIR1 is setand
data transfer starts as soon as the SSPBUF register is loaded.

Since maximum 112 integrated circuits may simultaneously share the same transmission line, the first data byte must contain

address which matches only one slave device. Each component has its own address listed in the proper data sheet. The eighth SSPCON2

bit of the first data byte specifies direction of data transmission, the microcontroller is to send or receive data. In this case, itis all

about data receive and the eighth bit therefore is logic zero (0).

Fig. 6-28 Data Transmission in I2°C Master Mode

When address match occurs, the microcontroller has to wait for the acknowledge data bit. The

slave device acknowledges address match by clearing the ASKSTAT bit of the SSPCON2
register. If the match properly occurred, all bytes representing data are transmitted in the same ’

way.

Data transmission ends by setting the SEN bit of the SSPCONZ2 register. The so called STOP
condition occurs, which enables the SDA pin to receive pulse condition: Start - Address -

Slave Address

START
m v Sequence
S I -~

SDA pin

Acknowledge - Data - AcknowledgeData - Acknowledge - Stop!

Fig.6-29 Data Transmission in I2°C Master Mode

Data Reception in I’C Master Mode

SSPBUF |01x|1|1|x|*|"l"t—'4ﬁ aline

SSPCON2 Dnl | | l | | l'_é‘ﬁ _‘Acknnwledge

Data

\ 4

SDA pin

SSPEUF [xpxxlxx—<F | T
SSPCON2 lJul l l I l | |*_ﬁ‘_ Acknowledge

Preparations for data reception are similar to those for data transmission, with exception that the last bit of the first sent byte (containing address) is logic one (1). It specifies that master
expects to receive data from addressed slave device. With regard to the microcontroller, the following events occur:

After internal preparations are finished and START bit is set, slave device starts sending one byte at a time. These bytes are stored in the serial register SSPSR. Each data is, after receiving
the last eighth bit, loaded to the SSPBUF register from where it can be read. By reading this register, the acknowledge bit is automatically sent, which means that master device is ready to

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

66/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

receive new data.

Atthe end, similar to data transmission, data reception ends by setting the STOP bit:

Slave Address

SDA pin
SSPBUF |1 x!xxxxxxl—-ﬁ m

sspoonz ORI <, acomone

SDA pin
SSPSR |x|x‘x|x|x|x|x|xlq— himhl
SSPBUF |x|x|x xlx x|x x] —-4? ‘Im“uwledge

Data

Fig. 6-30 Data Reception in I?°C Master Mode

Start - Address - Acknowledge - Data - Acknowledge Data - Acknowledge - Stop!
In this pulse condition, the acknowledge bit is sent to slave device.

Baud Rate Generator

In order to synchronize data transmission, all events taking place on the SDA pin must be synchronized with the clock generated in master device. This clock is generated by a simple
oscillator whose frequency depends on the microcontroller’s main oscillator frequency, value written to the SSPADD register and the current SPI mode.

The clock frequency of the mode described in this book depends on selected quartz crystal and the SPADD register. The formula used to calculate itis shown in figure below.

Frequency

Qxiboxbdx]sseann

SCL pin
nnnnnng ——

Baud Rate (frequency):

Oscillator | T
LT

Fosc

L 10 _1_1_ ol.ssrcou

F = Fosc
4(SSPADD+1) Maode

Fig. 6-31 Baud Rate Generator

Useful notes ...

When the microcontroller communicates with peripheral components, it may happen that data transfer fails for some reason. In that case, it is recommended to check the status of some bits
which can clarify the problem. In practice, the state of these bits is checked by executing a short subroutine after each byte transmission and reception (justin case).

WCOL (SPCON,7) - If you try to write a new data to the SSPBUF register while another data transmit/receive is in progress, the WCOL bit will be set and the contents of the SSPBUF register
remains unchanged. Write does not occur. After this, the WCOL bit must be cleared in software.

BF (SSPSTAT,0) - In transmit mode, this bit is set when the CPU writes to the SSPBUF register and remains set until the byte in serial format is shifted from the SSPSR register. In receive
mode, this bitis set when data or address is loaded to the SSPBUF register. It is cleared when the SSPBUF register is read.

SSPOV (SSPCON,6) - In receive mode, this bitis set when a new byte is received by the SSPSR register via serial communication, whereas the previously received data has not been read
from the SSPBUF register yet.

SDA and SCL Pins - When SPP module is enabled, these pins turns into Open Drain outputs. It means that these pins must be connected to the resistors which, at the other end, are
connected to positive power supply.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 67/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

vcc

Fig. 6-32 Open Drain Output Resistors

In Short:

In order to establish serial communication in I°C mode, the following should be done:

Setting Module and Sending Address:

« Value to determine baud rate should be written to the SSPADD register;

« SlewRate control should be turned off by setting the SMP bit of the SSPSTAT register;

¢ In order to select Master mode, binary value 1000 should be written to the SSPM3-SSPMO bits of the SSPCON1 register;

* The SEN bit of the SSPCONZ2 register should be set (START condition);

« The SSPIF bit is automatically set at the end of START condition when the module is ready to operate. It should be cleared;

« Slave address should be written to the SSPBUF register; and

« When the byte is sent, the SSPIF bit (interrupt) is automatically set when the acknowledge bit has been received from the Slave device.

Data Transmit:

« Data is to be send should be written to the SSPBUF register;
« When the byte is sent, the SSPIF bit (interrupt) is automatically set upon the acknowledge bit has been received from Slave device; and
« In order to inform the Slave device that transmit is complete, STOP condition should be initiated by setting the PEN bit of the SSPCON register.

Data Receive:

¢ In order to enable receive the RSEN bit of the SSPCONZ2 register should be set;

« The SSPIF bit signals data receive. When data is read from the SSPBUF register, the ACKEN bit of the SSPCON2 register should be set in order to enable
sending acknowledge bit; and

« In order to inform Slave device that transmit is complete, the STOP condition should be initiated by setting the PEN bit of the SSPCON register.

« previous chapter | table of contents | next chapter —

Book: PIC Microcontrollers
TOC Introduction Ch.1 Ch.2 Ch.3 Ch4. Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 App.A App.B App.C

Chapter 7: Analog Modules

Apart from a large number of digital /O lines, the PIC16F887 contains 14 analog inputs. They enable the microcontroller to recognize, not only whether a pin is driven to logic zero or one (0
or +5V), but to precisely measure its voltage and convertitinto a numerical value, i.e. digital format. The whole procedure takes place in the A/D converter module which has the following

features:

« The converter generates a 10-bit binary result using the method of successive approximation and stores the conversion results into the ADC registers (ADRESL
and ADRESH);

« There are 14 separate analog inputs;

« The A/D converter allows conversion of an analog input signal to a 10-bit binary representation of that signal; and

« By selecting voltage references Vref- and Vref+, the minimal resolution or quality of conversion may be adjusted to various needs.

ADC Mode and Registers

Even though the use of A/D converter seems to be very complicated, it is basically very simple, simpler than using timers and serial communication module, anyway.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

68/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

AVdd
Vref+
Vrel-
[g 0000 JEENES
| B D001
| 0 0010
O D011
Il O 0100
L,,|| [§ o I
B o 0110
| E e f@ Justified
\ H 1001
\ 0O 1010 GO/DONE
VB 1011 @
= 1100
s 110 1 . .
1/ 1110 ADRESH || ADRESL |
1141

GND

ADCON1 Register

Fig. 7-1 ADC Mode and Registers

The module is under the control of the bits of four registers:

« ADRESH - Contains high byte of conversion result;
« ADRESL - Contains low byte of conversion result;
« ADCONO - Control register 0; and

+« ADCON1 Control register 1

ADRESH and ADRESL Registers
When converting an analog value into a digital one, the result of the 10-bit A/D conversion will be stored in these two registers. In order to deal with this value easier, it can appear in two

formats- left justified and right justified. The ADFM bit of the ADCON1 register determines the format of conversion result (see figure 7-2). In the event that A/D converter is not used, these
registers may be used as general-purpose registers.

“Right justified”

“Left justified”

10 - bit result (ADFM=0)

Fig. 7-2 ADRESH and ADRESL Registers
A/D Acquisition Requirements

For the ADC to meet its specified accuracy, itis necessary to provide a certain time delay between selecting specific analog input and measurement itself. This time is called "acquisition
time" and mainly depends on the source impedance. There is an equation used for accurately calculating this time, which in the worst case amounts to approximately 20uS. Briefly, after
selecting (or changing) the analog input and before starting conversion itis necessary to provide at least 20uS time delay to enable the ACD maximal conversion accuracy.

ADC Clock Period
Time needed to complete a one-bit conversion is defined as TAD. The required TAD must be at least 1,6 uS. One full 10-bit A/D conversion is a bit longer than expected and amounts to 11

TAD periods. However, since both the conversion clock frequency and source are determined by software, one of the available combination of bits ADCS1 and ADCSO should be selected
before voltage measurement on some analog input starts. These bits are stored in the ADCONO register.

DEVICE FREQUENCY (FOSC)

ADC CLOCK SOURCE ADCS1 ADCSO
20 Mhz 8 Mhz 4 Mhz 1 Mhz
Fosc/2 0 0 100 nS 250 nS 500 nS 2 uS
Fosc/8 0 1 400 nS 1usS 2 usS 8 us
Fosc/32 1 0 1.6 uS 4 us 8 usS 32 uS
Frc 1 1 2-6uS 2-6uS 2-6uS 2-6uS

Table 7-1 ADC Clock Period

Any change in the system clock frequency will affectthe ADC clock frequency, which may adversely affect the ADC result. Device frequency characteristics are shown in the table above.
The values in the shaded cells are outside of recommended range.

How to Use A/D Converter?

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 69/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

In order to enable the A/D converter to run without problems as well as to avoid unexpected results, it is necessary to consider the following:

« A/D converter does not differ between digital and analog voltages. In order to avoid errors in measurement or chip damage, the pins should be configured as
analog inputs before conversion starts. The bits used for this purpose are stored in the TRIS and ANSELH registers;

« When the port with analog inputs marked as CHO-CH13 is read, the corresponding bits will be driven to logic zero (0); and
« Roughly speaking, voltage measurement in the converter is based on comparing input voltage with internal scale which has 1024 marks (210=1024). The lowest

scale mark stands for the Vref- voltage, whilst the highest mark stands for the Vref+ voltage. Figure 7-3 below shows selectable referent voltages and their

minimum and maximum values as well.

VCC + 0.3V

ADCONO Register

VCC (+5V)

A

GND (0V)

Fig. 7-3 How to Use The A/D Converter

Analog Input
Voltage Vin

| ADCS1 | ADCSO | CHS3 | CHS2 | CHS1 | CHSO |GO/DONE| ADON |

Legend

R/W Readable/Writable bit
(0) After reset, bit is cleared

Fig. 7-4 ADCONO Register

ADCS1, ADCSO0 - A/D Conversion Clock Select bits select clock frequency used for internal synchronization of A/D converter. It also affects duration of conversion.

ADCSs1

0

* Clock is generated by internal oscillator which is builtin converter.

ADCS2

0
1
0
1

Table 7-2 A/D Conversion Select Bits

CHS3-CHSO - Analog Channel Select bits select a pin or an analog channel for conversion, i.e. voltage measurement:

CHS3 CHS2
0 0
0 0
0 0
0 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

CHS1

0

o o

(= =

CHSO0

0

H O = o

0
1

CHANNEL

O W N U AW N

=
w N = O

Table 7-3 Analog Channel Status Bits

GO/DONE - A/D Conversion Status bit determines current status of conversion:

« 1-A/D conversion is in progress; and

« 0-A/D conversion is complete. This bit is automatically cleared by hardware when the A/D conversion is completed.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

CVref
Vref = 0.6V

CLOCK

Fosc/2
Fosc/8
Fosc/32
RC *

PIN
RAO/ANO
RA1/AN1
RA2/AN2
RA3/AN3
RA5/AN4
REO/AN5
RE1/AN6
RE2/AN7
RB2/ANS
RB3/AN9

RB1/AN10

RB4/AN11

RBO/AN12

RB5/AN13

70/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
ADON - A/D On bit enables A/D converter.

« 1-A/D converter is enabled; and
¢ 0-A/D converter is disabled.

ADCON1 Register

(apfm [- [verer [vereo [- [- [- [. |

Legend

- Bit is unimlemented
RW Readable/Writable bit
{0} After reset, bit iz cleared

Fig. 7-5 ADCON1 Register
ADFM - A/D Result Format Select bit

« 1 - Conversion result right justified. Six most significant bits of the ADRESLH are not used; and
« 0 - Conversion result left justified. Six least significant bits of the ADRESL are not used.

VCFG1 - Voltage Reference bit selects negative voltage reference source needed for A/D converter operating.
« 1 - Negative voltage reference is applied on the Vref- pin; and
« 0 - Voltage power supply Vss is used as negative voltage reference source.

VCFGO - Voltage Reference bit selects positive voltage reference source needed for A/D converter operating.
« 1 - Positive voltage reference is applied on the Vref+ pin; and

« 0 - Voltage power supply Vdd is used as positive voltage reference source.

In Short:
In order to measure voltage on an input pin by A/D converter the following should be done:
Step 1 - Configuring port:

« Write logic one (1) to the corresponding bit of the TRIS register to configure it as input; and

« Write logic one (1) to the corresponding bit of the ANSEL register to configure it as analog input.
Step 2 - Configuring ADC module:

« Configure voltage reference in the ADCON1 register;

« Select ADC conversion clock in the ADCONO register;

« Select one of input channels CHO-CH 13 of the ADCONO register;

« Select data format using the ADFM bit of the ADCON1 register; and

« Enable A/D converter by setting the ADON bit of the ADCONO register.

Step 3 - Configuring ADC interrupt (optionally):

« Clear the ADIF bit; and
« Set the ADIE, PEIE and GIE bits.

Step 4 - Wait for the required acquisition time (approximately 20uS) to pass.
Step 5 - Start conversion by setting the GO/DONE bit of the ADCONO register.
Step 6 - Wait for ADC conversion to complete.

« It is necessary to check in program loop whether the GO/DONE pin is cleared or wait for an A/D interrupt (must be previously enabled).
Step 7 - Read ADC results:

* Read the ADRESH and ADRESL registers.

Analog Comparator

In addition to A/D converter, there is one more module, which until quite recently has been embedded only in integrated circuits, belonging to so called analog electronics. Owing to the fact
thatitis hardly possible to find any more complex automatic device which in some way does not use these circuits, two high quality comparators along with additional electronics are
integrated into the microcontroller and connected to its pins.

How does a comparator operate? Basically, the analog comparator is an amplifier which compares the magnitude of voltages at two inputs. Looking at its physical features, it has two inputs
and one output. Depending on which input has a higher voltage (analog value), a logic zero (0) or logic one (1) (digital values) will appear on its output:

N

ouT
Out 4

v

Fig. 7-6 Analog Comparator

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 71/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

« When the analog voltage at Vin- is higher than the analog voltage at Vin+, the output of the comparator is a digital low level; and

« When the analog voltage at Vin+ is higher than the analog voltage at Vin-, the output of the comparator is a digital high level.
The PIC16F887 microcontroller has two such voltage comparators whose inputs are connected to /O pins RA0-RA3, whereas the outputs are connected to the pins RA4 and RA5. In
addition there is also a referent voltage internal source on chip itself, but it will be discussed later.

These two circuits are under control of the bits stored in the following registers:

CM1CONO is in control of comparator C1;
CM2CONO is in control of comparator C2; and
CM2CONT1 is in control of comparator C2.

Voltage Reference Internal Source

One of two analog voltages provided on the comparator inputs is usually stable and unchangeable. Because of those features itis called "voltage reference"(Vref). To generate it, both
external and special internal voltage source can be used. After selecting voltage source, Vrefis derived from it by means of ladder network consisting of 16 resistors which form voltage
divider. The voltage source is selectable through both ends of that divider through the VRSS bit of the VRCON register.

In addition, the voltage fraction provided by resistor ladder network may be selected through the bits VR0-VR3 and used as voltage reference. See figure below.

VREN
C1RSEL
Vdd C2RSEL

Vref+

Vref-

I ———Y -

CVref
?

L 4 VR3
VR2
CVref
VR1
VRO
Fig. 7-7 VREF

The comparator voltage reference has 2 ranges with 16 voltage levels in each range. Range selection is controlled by the VRR bit of the VRCON register. The selected voltage reference
may be output to the RA2/AN2 pin.

Even though the main idea was to obtain varying voltage reference for the operation of analog modules, a simple A/D converter is obtained in that way too. This converter is very useful in
some situations.

It's operation is under control of the VRCON register.
Comparators and Interrupt Operation
The flag bit CMIF of the register PIR is set on every change of logic state on any comparator's output. The same changes also cause an interrupt if the following bits are set:

CMIE bit of the PIE register;
PEIE bit of the INTCON register; and
GIE bit of the INTCON register.

Ifinterrupt is enabled, any change on the comparator's output can wake up the microcontroller from sleep mode ifitis setup in that mode.

CM1CONO Register

Legend
- Bit is unimplemented
R/W Readable/Writable bit

R Readable bit
(ay After reset, bit is cleared

Fig. 7-8 CM1CONO Regsiter

Bits of this register are in control of the comparator C1. It mainly affects configuration of its inputs. To understand it better, look at figure 7-9 below which shows only a part of electronics
directly affected by the bits of this register.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 72/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

I
| c12iN0- 7

C12IN1- [
| C12IN2- [
\C12IN3- [}

Comparator C1

L1
" C1IN+
e

Fig. 7-9 Comparator C1 Enable Bit

C10N - Comparator C1 Enable bit enables comparator C1.

e 1 -Comparator C1 is enabled; and
e 0 - Comparator C1 is disabled.

C10UT - Comparator C1 Output bit is comparator C1 output bit.
If C1POL = 1 (comparator output is inverted)

* 1 - Analog voltage at C1Vin+ is lower than analog voltage at C1Vin-; and
¢ 0 - Analog voltage at C1Vin+ is higher than analog voltage at C1Vin-.

If C1POL = 0 (comparator output is non-inverted)

¢ 1 - Analog voltage at C1Vin+ is higher than analog voltage at C1Vin-; and
« 0 - Analog voltage at C1Vin+ is lower than analog voltage at C1Vin-.

C10E Comparator C1 Output Enable bit.

« 1 -Comparator C10UT output is connected to the C10UT pin.*; and
¢ 0 - Comparator output is internal only.

*In order to enable the C10UT bit to be present on the pin, two conditions must be met: C1ON = 1 (comparator must be on) and the corresponding TRIS bit = 0 (pin must be configured as
output).
C1POL - Comparator C1 Output Polarity Select bit enables comparator C1 out put state to be inverted.

* 1 -Comparator C1 output is inverted; and
¢ 0 - Comparator C1 output is non-inverted.

C1R - Comparator C1 Reference Select bit

« 1 - Non-inverting input C1Vin+ is connected to reference voltage C1Vref; and
« 0 - Non-inverting input C1Vin+ is connected to the C1IN+ pin.

C1CH1, C1CHO - Comparator C1 Channel Select bit

C1CH1 C1CHO COMPARATOR C1VIN- INPUT
0 0 Input C1Vin- is connected to the C12INO- pin
0 1 Input C1Vin- is connected to the C12IN1- pin
1 0 Input C1Vin- is connected to the C12IN2- pin
1 1 Input C1Vin- is connected to the C12IN3- pin

Table 7-4 Comparator C1

CM2CONO Register

| C20N [C20UT | C20E [C2POL | - [C2R [C2CH1 | C2CHO |

Legend

- Bit is unimplemented
RW Readable/Writable bit

R Readable bit

(0) After reset, bit is cleared

Fig. 7-10 CM2CONO Regsiter

Bits of this register are in control of comparator C2. Similar to the previous case, the figure 7-11 shows a simplified schematic of the circuit affected by the bits of this register.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 73/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

|

[c12IN0-
‘ C12IN1- []
| C12IN2-
C12iNs-

\

] o

Comparator C2

\ C2IN+ [
\\

Fig. 7-11 Comparator C2 Sch tic Di:

C20N - Comparator C2 Enable bit enables comparator C2.

¢ 1 -Comparator C2 is enabled; and
¢ 0 - Comparator C2 is disabled.

C20UT - Comparator C2 Output bit is comparator C

If C2POL = 1 (comparator output inverted)

2 output.

« 1 - Analog voltage at C1Vin+ is lower than analog voltage at C1Vin-; and

« 0 - Analog voltage at C1Vin+ is higher than
If C2POL = 0 (comparator output non-inverted)

¢ 1 - Analog voltage at C1Vin+ is higher than

analog voltage at C1Vin-.

analog voltage at C1Vin-; and

« 0 - Analog voltage at C1Vin+ is lower than analog voltage at C1Vin-.

C20E - Comparator C20utput Enable bit

* 1 -Comparator C20UT output is connected to the C20UT pin.*; and

« 0 - Comparator output is internal only.

*In order to enable the C20UT bit to be present on the pin, two conditions must be met: C20N = 1 (comparator must be on) and the corresponding TRIS bit = 0 (pin must be configured as

output).

C2POL - Comparator C2 Output Polarity Select bit enables comparator C2 out put state to be inverted.

« 1 - Comparator C2 output is inverted; and
« 0 - Comparator C2 output is non-inverted.

C2R - Comparator C2 Reference Select bit

* 1 - Non-inverting input C2Vin+ is connected to reference voltage C2Vref; and
« 0 - Non-inverting input C2Vin+ is connected to the C2IN+ pin.

C2CH1, C2CHO Comparator C2 Channel Select bit

C2CH1
0

CM2CON?1 Register

C2CHO COMPARATOR C2VIN- INPUT
0 Input C2Vin- is connected to the C12INO- pin
1 Input C2Vin- is connected to the C12IN1- pin
0 Input C2Vin- is connected to the C12IN2- pin
1 Input C2Vin- is connected to the C12IN3- pin

Table 7-5 Comparator C2 Channel Select Bit

MC10UT Mirror Copy of C10UT bit
MC20UT Mirror Copy of C20UT bit

C1RSEL Comparator C1 Reference Select bit

Legend

- Bit is unimplemented
R/W Readable/Writable bit

R Readable bit

(0) After reset, bit is cleared
(1) After reset, bit is set

Fig. 7-12 CM2CON1 Register

« 1 - Selectable voltage CVref is used in voltage reference C1Vref source; and
« 0 - Fixed voltage reference 0.6V is used in voltage reference C1Vref source.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

74/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
C2RSEL - Comparator C2 Reference Select bit
« 1 - Selectable voltage CVref is used in voltage reference C2Vref source; and
« 0 - Fixed voltage reference 0.6V is used in voltage reference C2Vref source.
T1GSS - Timer1 Gate Source Select bit
¢ 1-Timer T1gate source is T1G; and
« 0 - Timer T1gate source is comparator SYNCC20UT.
C2SYNC - Comparator C2 Output Synchronization bit

* 1 - Comparator C2 output is synchronized to falling edge of Timer TMR1 clock; and
« 0 - Comparator output is asynchronous signal.

VRCON Register

Legend

R/W Readable/Writable bit
(0) After reset, bit is cleared

Fig. 7-13 VRCON Register
VREN Comparator C1 Voltage Reference Enable bit

« 1 -Voltage reference CVref source is powered on; and
« 0 - Voltage reference CVref source is powered off.

VROE Comparator C2 Voltage Reference Enable bit

« 1-Voltage reference CVref is connected to the pin; and
« 0 - Voltage reference CVref is disconnected from the pin.

VRR - CVref Range Selection bit

« 1 -Voltage reference source is set to low range; and
« 0 - Voltage reference source is set to high range.

VRSS - Comparator Vref Range selection bit

« 1 -Voltage reference source is in the range of Vref+ to Vref-; and
« 0 - Voltage reference source is in the range of Vdd - Vss (power supply voltage).

VR3 - VRO CVref Value Selection

If VRR =1 (low range)

Voltage reference is calculated using the formula: CVref = (VR3:VR0}/24)Vdd

If VRR =0 (high range)

Voltage reference is calculated using the formula: CVref = Vdd/4 + ([VR3:VR0]/32)Vdd
In Short:

In order to properly use builtin Comparators, itis necessary to do the following:

Step 1 - Configuring module:

« In order to select the appropriate mode, bits of the registers CM1CONO and CM2CONO should be configured. Interrupt should be disabled on any change of
mode.

Step 2 - Configuring internal voltage reference Vref source (only when used). In the VRCON register it is necessary to :

« Select one of two voltage ranges using the VRR bit;
« Configure necessary Vref using bits VR3 - VRO;

« Set the VROE bit if needed; and

« Enable voltage Vref source by setting the VREN bit.

Formula used to calculate voltage reference:

VRR =1 (low range)
CVref = (VR3:VR0]/24)VLADDER

VRR = 0 (high range)
CVref = (VLADDER/4) + ([VR3:VRO]VLADDER/32)

Vladder = Vdd or ([Vref+] - [Vref-]) or Vref+
Step 3 - Starting operation:

« Enable interrupt by setting bits CMIE (PIE register), PEIE and GIE (both in the INTCON register);
+ Read bits C10OUT and C20UT of the CMCON register; and
« Read flag bit CMIF of the PIR register. After being set, this bit must be cleared in software.

« previous chapter | table of contents | next chapter —

Book: PIC Microcontrollers

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 75/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

TOC Introduction Ch.1 Ch.2 Ch.3 Ch4. Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 App.A App.B App.C

Chapter 8: Other MCU's Circuits

Oscillators

As seen in figure below, clock signal may be generated by one of two builtin oscillators.

o
(]
Q
Em
~

Pins

— et

LP, XT, HS, RC, RCIQ, EC mode

HFINTOSC

2 MHz

LFINTOSG

31 kHz

Divider

1N

Internal Oscillator

Watchdog Timer

i OSCCON
Fail-Safe Clock
Monitor

Register Programmer
(Config word)

Fig. 8-1 Two built in oscillators

An External oscillator is installed within the microcontroller and connected to the OSC1 and OSC2 pins. Itis called “external” because it relies on external circuitry for the clock signal and
frequency stabilization, such as a stand-alone oscillator, quarts crystal, ceramic resonator or resistor-capacitor circuit. The oscillator mode is selected by bits of bytes sent during
programming, so called Config Word.

Internal oscillator consists of two separate, internal oscillators:

The HFINTOSC is a high-frequency internal oscillator which operates at 8MHz. The microcontroller can use clock source generated at that frequency or after being divided in prescaler; and

The LFINTOSC is a low-frequency internal oscillator which operates at 31 kHz. Its clock sources are used for watch-dog and power-up timing but it can also be used as a clock source for the
operation of the entire microcontroller.

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bit of the OSCCON register.

OSCCON Register

The OSCCON register controls the system clock and frequency selection options. It contains the following bits: frequency selection bits (IRCF2, IRCF1, IRCFO0), frequency status bits (HTS,
LTS), system clock control bits (OSTA, SCS).

Legend

R
{0
4}

Bit is unimplemented
Readable/Writable bit
Readable bit

After reset, bit is cleared
After reset, bit is set

Fig. 8-2 OSCCON Register

IRCF2-0 - Internal Oscillator Frequency Select bits. Combination of these three bits determines the divider rate. The clock frequency of internal oscillator is also determined in this way.

IRCF2

1

o o o o

IRCF1

1

o o

IRCFO

H O B O B O =~

0

FREQUENCY
8 MHz
4 MHz
2 MHz
1 MHz
500 kHz
250 kHz
125 kHz
31 kHz

Table 8-1 Internal Oscillator Frequency Select Bits

OSTS - Oscillator Start-up Time-out Status bit indicates which clock source is currently in use. This bit is readable only.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

osc.
HFINTOSC
HFINTOSC
HFINTOSC
HFINTOSC
HFINTOSC
HFINTOSC
HFINTOSC
LFINTOSC

76/155

16/2/2016

« 1 - External clock oscillator is in use; and
¢ 0 - One of internal clock oscillators is in use (HFINTOSC or LFINTOSC).

HTS - HFINTOSC Status bit (8 MHz - 125 kHz) indicates whether high-frequency internal oscillator operates in a stable way.

Introduction: World of microcontrollers - Book: PIC Microcontrollers

¢ 1-HFINTOSC is stable; and
e 0-HFINTOSC is not stable.

LTS - LFINTOSC Stable bit (31 kHz) indicates whether low-frequency internal oscillator operates in a stable way.

e 1-LFINTOSC is stable; and
¢ 0-LFINTOSC is not stable.

SCS - System Clock Select bit determines which oscillator is to be used as a clock source.

« 1 - Internal oscillator is used for system clock;
¢ 0 - External oscillator is used for system clock; and
The oscillator mode is set by bits in Config Word which are written to the microcontroller memory during programming.

External Clock Modes

In order to enable the external oscillator to operate at different speeds and use different components for frequency stabilization, it can be configured to operate in one of several modes.
Mode selection is performed after the program writing and compiling. First of all, itis necessary to activate the program on PC used for programming. In this case, PICflash. Click on the
oscillator combox and select one option from the drop-down list. After that, the appropriate bits will be set becoming in that way a part of several bytes which together form Config Word.

During programming, the bytes of Config Word are written to the microcontroller's ROM memory and stored in special registers which are not available to the user. On the basis of these bits,
the microcontroller “knows” what to do, although itis not explicitly specified in the (written) program.

HS

EC - B4R 32 1/0. RAT as CLEIN
INTOSCIO « RAR a2 1/0. RAT as /0
INTOSC - A6 as CLEOUT. RAT a: 1/0
RCIO - RAG az 1/0. RAT az RC

RC - RAG as CLEDUT. RAT a3 RC

[mikroF lektronika - Pic FLASH [¥7.07] with mikrolCD

Ble Device Buffer Windows USE About History
Configuration Bits
| Code Protect
Dscillator H* et i Nore
Watchdog Timer Ensbied - 0000k - TFFFR [A1)
Bt e [:
FLASH Program Memory
Master Clear Ensbled ¥ Wirike Enable
Data EE Protect Disabled e & Wike protection D
Brawn Dut Detect BOD Ensbled - " D000 - 00FFh Protected
ST 0000h - O7FFh Protected e
Int-Ext able - 3 HE
- 0000 - 0FFFh Protected
Fail-safe Clk. Monitor Ensbied >
Low Yoltage Program | Ensbied -
In-Civeuit Debugger |ICD Disabled - 1] ity o et
Cal Word 111
Brown-out Reset Sel. zat o 4.0V -
1D Locations m
o) e]) B [~]
Program Memony Szec B K Device Status: Idle Type B .
EEFROM Size 256 Bytes Address: Oh Resvision ;U%
Tt
Device: PICIGFBETY Cpesation: None

External oscillator in EC mode

Fig.8-3 PICflash Program

The external clock (EC) mode uses the system clock source configured from external oscillator. The frequency of this clock source is unlimited (0- 20MHz).

This mode has the following advantages:

Fig. 8-4 External Oscillator

¢ The external clock source is connected to the OSC1 input and the OSC2 is available for general purpose 1/0O;

« |t is possible to synchronize the operation of the microcontroller with the rest of on board electronics;

« In this mode the microcontroller starts operating immediately after the power is on. There is no delay required for frequency stabilization; and

* Temporary stopping the extenal clock input has the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device
resumes operation as if nothing has happened.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

771155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

External Oscillator

EC mode

CPU

Pin OSC1

JULI

Pin 0SC2 _ |

o

Fig. 8-5 External Oscillator in EC Mode

External oscillator in LP, XT or HS mode

Fig. 8-6 Two Types of External Oscillators

The LP, XT and HS modes support the usage of internal oscillator for configuring clock source. The frequency of this source is determined by quartz crystal or ceramic resonators connected
to the OSC1 and OSC2 pins. Depending on features of the component in use, select one of the following modes:

LP mode (Low Power) is used for low-frequency quartz crystal only. This mode is designed to drive only 32.768 kHz crystals usually embedded in quartz watches. It is easy to recognize
them by small size and specific cylindrical shape. The current consumption is the least of the three modes;

XT mode is used for intermediate-frequency quartz crystals up to 8 MHz. The current consumption is the medium of the three modes ;and

HS mode (High Speed) is used for high-frequency quartz crystals over 8 MHz. The current consumption is the highest of the three modes.

LP, XT, HS mode

0SC1 Pin
20-30pF

JULIL
=

—— osc2Pin

GND : 'S
20-30pF

Quartz crystal

Fig.8-7 Schematic of External Oscillator and Additional External Components

Ceramic resonators in XT or HS mode

Fig.8-8 Ceramic Resonator

Ceramic resonators are by their features similar to quartz crystals. This is why they are connected in the same way. Unlike quartz crystals, they are cheaper and oscillators containing them
have a bit worse characteristics. They are used for clock frequencies ranging between 100 kHz and 20 MHz.

External oscillator in RC and RCIO mode

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 78/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

There are certainly many advantages in using elements for frequency stabilization, but sometimes they are really unnecessary. It is mostly sufficient that the oscillator operates at frequency
not precisely defined so that embedding of such expensive elements means a waste of money. The simplest and cheapest solution in these situations is to use one resistor and one
capacitor for the operation of oscillator. There are two modes:

RC mode. In RC mode, the RC circuit is connected to the OSC1 pin as shown in figure. The OSC2 pin outputs the RC oscillator

W
frequency divided by 4. This signal may be used for calibration, synchronization or other application requirements.
T OSC1 Pim
Fig. 8-9 RC Mode
20 pF I

MR, 0362 Fin
Lr |:
RCIO mode. Similar to the previous case, the RC circuitis connected to the OSC1 pin. This time, the available OSC2 pin is used as s
additional general purpose I/O pin.
5 100K
OSC Pin
Fig. 8-10 RCIO Mode
m gF

OECIFin

o E

§H

In both cases, itis recommended to use components as shown in figure.

The frequency of such oscillator is calculated according to the formula f= 1/T in which:
f=frequency [Hz]

T =R*C = time constant[s]

R = resistor resistance [Q]

C = capacitor capacity [F]

Internal Clock Modes

The internal oscillator circuit consists of two separate oscillators that can be selected as the system clock source:

The HFINTOSC oscillator is factory calibrated and operates at 8 MHz. Its frequency can be user-adjusted via software using bits of the OSCTUNE register; and
The LFINTOSC oscillator is not factory calibrated and operates at 31kHz.

Similar to the external oscillator, the internal one can also operate in several modes. The mode is selected in the same way as in case of external oscillator- using bits of the Config Word
register. In other words, everything is performed within PC software, immediately before program writing to the microcontroller starts.

Internal oscillator in INTOSC mode

In this mode, the OSC1 pin is available as general purpose 1/O while the OSC2 pin outputs selected internal oscillator INTOSC mode
frequency divided by 4.
0sC1 Pla
Fig. 8-11 INTOSC Mode
o
asez Pin
LI
Foscld
Internal oscillator in INTOSCIO mode
In this mode, both pins are available for general purpose 1/0.
Fig. 8-12 INTOSCIO Mode
OSC1 Pln
/o
asC2 Pin
o

Internal Oscillator Settings
The internal oscillator consists of two separate circuits.

1. The high-frequency internal oscillator HFINTOSC is connected to the postscaler (frequency divider). Itis factory calibrated and operates at 8MHz. Using postscaler, this oscillator can
output clock sources at one of seven frequencies which can be selected via software using the IRCF2, IRCF1 and IRCFO pins of the OSCCON register.

The HFINTOSC is enabled by selecting one of seven frequencies (between 8 MHz and 125 kHz) and setting the System Clock Source (SCS) bit of the OSCCON register afterwards. As seen
in figure below, everything is performed using bits of the OSCCON register.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 79/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

-
2
w
4]
i
@
=]
o

PO
P OO D T -
PO O SO0 -

LFINTOSC §hilsish
=

OSCCON Register | IRCF2 | IRCF1] IRCFO] SCS |

Fig. 8-13 Internal Oscillator settings

2. The low-frequency oscillator LFINTOSC is uncalibrated and operates at 31 kHz. It is enabled by selecting this frequency (bits of the OSCCON register) and setting the SCS bit of the same
register.

Two-Speed Clock Start-up Mode
Two-Speed Clock Start-up mode is used to provide additional power savings when the microcontroller operates in sleep mode. What is this all about?
When configured to operate in LP, XT or HS modes, the external oscillator will be switched off on transition to sleep in order to reduce the overall power consumption of the device.

When conditions for wake-up are met, the microcontroller will notimmediately start operating because it has to wait for clock signal frequency to become stable. Such delay lasts for exactly
1024 pulses. After that, the microcontroller proceeds with program execution. The problem is that very often only a few instructions are performed before the microcontroller is set up to Sleep
mode again. It means that most of time as well as power obtained from batteries is wasted. This problem is solved by using internal oscillator for program execution while these 1024 pulses
are counted. Afterwards, as soon as the external oscillator frequency becomes stable, it will automatically take over the “leading role”. The whole process is enabled by setting one bit of the
configuration word. In order to program the microcontroller itis necessary to select the Int-Ext Switchover option in software.

Disabled

Ele Device Buffer ‘Windows USE About History

Fail-Safe Clock Monitor

Brown Out Detect

Int-Ext Switchover

BOD Enabled ; i

(0000 - DOFFh Protected
(" D000k - 07FFh Pratectsd
£~ 0000h - OFFFh Protected

Device; PICI6FES7

File: CHDOCUMENTS AND SETTINGS|MARKO), MIK|DESKTOP|TOUCHPANEL BIGPICE\P 18\TOUCHPANEL HEX
| Operation; None

Conligueation Bits pere
o Code Protect

UsONSEE | HE] & Mone

Watchdag Timer Enabled ~ 000K - 1FFFR (A1)

Power Up Timer [Dizabled
e ki d FLASH Program Memory

Master Clear Enabled v Write Enable
Data EE Protect Dicabled o & Wiite protaction O

Fail-safe Clk. Monitor Enabled
Low Voltage Program -énablad
In-Circuit Debugger 10D Disabled oetiadon Heed Fitac:
m—— Cal. Word 1001 |
Brown-out Reset Sel, set o 40V -
11D Locations
(AFFF | |3FFF | [3FFF | 3FFF .
Program Memory Size: 8 K Device Status: Idle Type Pncrsce:
EEPROM Size: 256 Bytes Addiess: Oh Revisian

Fig.8-14 Enable Int-Ext Switchover

The Fail-Safe Clock Monitor (FSCM) monitors the operation of external oscillator and allows the microcontroller to proceed with program execution even the external oscillator fails for some
reason. In this case, the internal oscillator takes over its role.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

80/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

OSC.

Monitor

LFINTOSC [N

HFINTOSC

Fig. 8-15 Fail-Safe Clock Monitor

The fail-safe clock monitor detects a failed oscillator by comparing the internal and external clock sources. In case it takes more than 2mS for the external oscillator clock to come, the clock
source will be automatically switched. The internal oscillator will thereby continue operating controlled by the bits of the OSCCON register. When the OSFIE bit of the PIE2 register is set, an

interrupt will be generated. The system clock will continue to be sourced from internal clock until the device successfully restarts the external oscillator and switches back to external
operation.

Similarly to the previous cases, this module is enabled by changing configuration word just before the programming of chip starts. This time, it is done by selecting the Fail-Safe Clk. Monitor

option.
Disatled
'm-,m{krnElekironika - PeFLASH [v7. 097 with mikrolCD
File Device Buffer Windows LUSE About History
— Conhguration B
= Code Protect
Dscillator !HS ® None
Watchdog Timer | Enabled 0000k - 1FFFh (Al)
- e
Up Timer !-D_lsebled FLASH Program Memory
Master Clear | Enabied Write Enable
Data EEProtect | Disabled /- @ Wike pectection O
Brown Out Detect | EOD Enabled ' - (0000 > O0FFh Protactsd
- 0000k - 07FFh Protected
Int-Ext Switchover | Enabled
LEn 0000k - DFFFh Pratected
Fail-safe Clk. Monitor |
Low Voltage Program | Enabled
- -
In-Circuit Debugger | ICD Dissbled ! hAomlon Wld i
B — Cal. Word 110 |
Brown-out Reset Sel. | set lo 4.0V - :
1D Locations
(3FFF | 3FFF | (3FFF | 3FFF |
Program Memory Size: 8 K Device Staus 1dle Tvoe Py s
EEPAOM Size 256 Bytes Addiezs: Ok Fieviziat
File: C:|DOCUMENTS AND SETTINGS{MARKO).MIKIDESKTOP|TOLICHPANEL BIGPICSIPIS|TOLCHPANEL HEX
|| Device: PIC18FBET Operation: None
Fig. 8-16 Enabling Fail-Safe Clock Monitor
OSCTUNE Register

Modifications in the OSCTUNE register affect the HFINTOSC frequency, but not the LFINTOSC frequency. Furthermore, there is no indication during operation that shift has occurred.

- [- | - [TUN | TUN3 | TUN2 | TUN1 | TUNO |

Legend

- Bit is unimplemented
R/W Readable/Writable bit
(0) After reset, bit is cleared

Fig. 8-17 OSCTUNE Register

TUN4 - TUNO Frequency Tuning bits. By combining these five bits, the 8MHz oscillator frequency shifts. In this way, the frequencies obtained by its division in the postscaler shift too.

TUN4 TUN3 TUN2 TUN1 TUNO FREQUENCY
0 1 1 1 1 Maximal
0 1 1 1 0
0 1 1 0 1

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

81/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

0 0 0 0 1

0 0 0 0 0 Calibrated
1 1 1 1 1

1 0 0 1 0

1 0 0 0 1

1 0 0 0 0 Minimal

Table 8-2 Frequency Tuning Bits

EEPROM

EEPROM is neither part of program memory (ROM) nor data memory (RAM), but a special memory segment. Even these memory locations are not easily and quickly accessed as other
registers, they are of greatimportance because the EEPROM data are permanently saved (after the power supply goes off). EEPROM data can be also changed at any moment. Because of
these exceptional features, each byte of EEPROM is valuable.

The PIC16F887 microcontroller has 256 locations of data EEPROM controlled by the bits of the following registers:

« EECON1 (control register);

« EECONZ2 (control register);

« EEDAT (saves data ready for write and read); and

« EEADR (saves address of EEPROM location to be accessed).

In addition, EECONZ2 is not true register, it does not physically exist. Itis used in write program sequence only.

The EEDATH and EEADRH registers belong to the same group as the registers used during EEPROM write and read. Both of them are therefore used for program (FLASH) memory write
and read.

Since this is considered a risk zone (you surely do not want your microcontroller to accidentally erase your program), we will not discuss it further, but advise you to be careful.

EECON1 Register

Legend

- Bit is unimplemented
RW Readable/Writable bit

R Readable bit

s Bit can only be set

{0} After reset, bit is cleared
{x) After reset, bit is unknown

Fig.8-18 EECON1 Register
EEPGD - Program/Data EEPROM Select bit

* 1-Access program memory; and
¢ 0-Access EEPROM memory.

WRERR - EEPROM Error Flag bit

« 1 - Write operation is prematurely terminated and error has occurred; and
¢ 0-Access EEPROM memory.

WREN - EEPROM Write Enable bit.

« 1 - Write to data EEPROM enabled; and
« 0 - Write to data EEPROM disabled.

WR - Write Control bit

« 1 - Initiates write to data EEPROM; and
¢ 0 - Write to data EEPROM is complete.

RD - Read Control bit

« 1 -Initiates read from data EEPROM; and
* 0-Read from data EEPROM disabled.

Read from EEPROM Memory
In order to read data EEPROM memory, follow the procedure below:

Step 1: Write an address (00h - FFh) to the EEADR register;

Step 2: Select EEPROM memory block by clearing the EEPGD bit of the EECON1 register;
Step 3: To read location, set the RD bit of the same register; and

Step 4: Data is stored in the EEDAT register and ready to use.

The following example illustrates data EEPROM read:

BSF STATUS, RP1 ;
BCF STATUS, RPO ; Access bank 2

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 82/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

MOVEF ADDRESS,W ; Move address to the W register
MOVWF EEADR ; Write address
BSF STATUS, RPO ; Access bank 3
BCF EECON1,EEPGD ; Select EEPROM

BSF EECON1,RD ; Read data
BCF STATUS, RPO ; Access bank 2
MOVE EEDATA,W ; Data is stored in the W register

Write to Data EEPROM Memory

In order to write data to EEPROM memory, first it is necessary to write the address to the EEADR register first and data to the EEDAT register afterwards. Then you have to follow a special
sequence to initiate write for each byte. Interrupts must be disabled during this procedure.

Data EEPROM write is illustrated in the example below:

BSF STATUS,RP1
BSF STATUS, RPO

BTFSC EECON, WR1 ; Wait for the previous write to complete
GOTO $-1 i

BCF STATUS, RPO ; Bank 2

MOVF ADDRESS,W ; Move address to W

MOVWF EEADR ; Write address

MOVF DATA,W ; Move data to W

MOVWE EEDATA ; Write data

BSF STATUS, RPO ; Bank 3
BCF EECON1,EEPGD ; Select EEPROM
BSF EECON1,WREN ; Write to EEPROM enabled

BCF INCON, GIE ; All interrupts disabled
MOVLW 55h ; Required sequence start
MOVWF EECON2

MOVLW AAh

MOVWF EECON2 ; Required sequence end

BSF EECON1, WR
BSF INTCON, GIE ; Interrupts enabled
BCF EECON1,WREN ; Write to EEPROM disabled

Reset! Black-out, Brown-out or Noises?

On reset, the microcontroller immediately stops operation and clears its registers. Reset signal may be generated externally atany moment (low logic level on the MCLR pin). If needed it
can be also generated by internal control logic. Power-on always causes reset. Namely, because of many transitional events which take place when power supply is on (switch contact
flashing and sparkling, slow voltage rise, gradual clock frequency stabilization efc.), itis necessary to provide a certain time delay before the microcontroller starts operating. Two internal
timers- PWRT and OST are in charge of that. The first one can be enabled or disabled during program writing. The scenario is as follows:

When power supply voltage reaches 1.2 - 1.7V, a circuit called Power-up timer resets the microcontroller within
approximately 72mS. Immediately upon this time has run out, the reset signal generates another timer called Oscillator Umax -
start-up timer within 1024 quartz oscillator periods. When this delay is over (marked as T reset in figure) and the MCLR pin |y -
is set high, the microcontroller starts to execute the first instruction in the program.

Umin -

Fig. 8-19 Oscillator Start-Up Time Delay

‘) Start

h T reset > Time

< Power Supply Voltage

Apart from such- “controlled” reset which occurs at the moment power goes on, there are another two resets called Black-out and Brown-out which may occur during operation as well as at
the moment power goes off.

Black-out reset

Black-out reset takes place when the power supply normally goes off. In that case, the microcontroller has no time to do anything

unpredictable simply because the voltage drops very fast beneath its minimal value. In other words- the light goes off, curtain falls Umae --

down and the show is over! Unom

<
3

Fig. 8-20 Black-Out Reset at Loss Of Power

& Power Supply Violtage

v

Time
Brown-out reset

When power supply voltage drops slowly (typical example of that is battery discharge although the microcontroller experiences far faster voltage drop as a slow process), the internal
electronics gradually stops operating and so called Brown-out reset occurs. In that case, prior to the microcontroller stops operating there is a serious danger that circuits which operate at
higher voltages start perform unpredictable. It can also causes fatal changes in the program itself because it is saved in on-chip flash memory.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 83/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
Fig. 8-21 Brown-Out Reset at Gradual Loss Of Power

Umax

Unom
Umin =
&
£
-
B
A
:
o
0 3
Time
Noises
This is a special kind of Brown-out reset which occurs in industrial environment when the power supply voltage “blinks” for a moment ol
and drops its value beneath minimal level. Even short, such noise in power line may catastrophically affect the operation of device. Ura - / ______-___
Unam

Fig. 8-22 Noises Umin -

O Power Supply Wollage

Time
MCLR pin

Logic zero (0) on the MCLR pin causes immediate and regular reset. It is recommended to be connected as shown in figure below. The function of additional components is to sustain “pure”
logic one (1) during normal operation. If their values are such to provide high logic level on the pin only upon T reset is over, the microcontroller will immediately start operating. This feature
may be very useful when itis necessary to synchronize the operation of the microcontroller with additional electronics or the operation of several microcontrollers.

In order to avoid any error which may occur on Brown-out reset, the PIC 16F887 has built in ‘defense mechanism’. Itis a simple but

effective circuit which reacts every time the voltage power supply drops below 4V and holds that level for more than 100 micro S
seconds. In that case, this circuit generates reset signal and since that moment the whole microcontroller operates as if it has just vee Mcu
been switched on.

R1

Fig. 8-23 Master Clear Pin

1K (or more)

MCLR

C1

I{JJUF (no danger)

GND

« previous chapter | table of contents | next chapter —

Book: PIC Microcontrollers
TOC Introduction Ch.1 Ch.2 Ch.3 Ch4. Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 App.A App.B App.C

Chapter 9: Instruction Set

It has been already mentioned that microcontrollers differs from other integrated circuits. Most of them are ready for installation into the target device just as they are, this is not the case with
the microcontrollers. In order that the microcontroller may operate, it needs precise instructions on what to do. In other words, a program that the microcontroller should execute must be
written and loaded into the microcontroller. This chapter covers the commands which the microcontroller "understands”. The instruction set for the 16FXX includes 35 instructions in total.
Such a small number of instructions is specific to the RISC microcontroller because they are well-optimized from the aspect of operating speed, simplicity in architecture and code
compactness. The only disadvantage of RISC architecture is that the programmer is expected to cope with these instructions.

INSTRUCTION DESCRIPTION OPERATION FLAG CLK *

Data Transfer Instructions

MOVLW k Move constant to W k->w 1

MOVWEF f Move W to f W ->f 1

MOVF f,d Move f to d f->d z 1 1,2
CLRW Clear W 0->W z 1
CLRF f Clear f 0->f z 1 2

SWAPF f,d Swap nibbles in f f(7:4),(3:0) -> f(3:0),(7:4) 1 1,2

Arithmetic-logic Instructions

ADDLW k Add W and constant W+k -> W C,DC, Z 1

ADDWF f,d Add W and f W+f -> d C,DC,z 1 1,2
SUBLW k Subtract W from constant k-W -> W C,DC, z 1

SUBWF f,d Subtract W from f f-W ->d C,DC, z 1 1,2
ANDLW k Logical AND with W with constant W AND k -> W 4 1

ANDWEF f,d Logical AND with W with f W AND f -> d z 1 1,2

ANDWF f,d Logical AND with W with f W AND f -> d z 1 1,2
IORLW k Logical OR with W with constant WORK ->W z 1

IORWF f,d Logical OR with W with f W OR f ->d z 1 1,2

84/155

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

XORLW k Logical exclusive OR with W with constant W XOR k -> W z 1 1,2
XORWF f,d Logical exclusive OR with W with f W XOR f ->d z 1
INCF f,d Increment f by 1 f+1 ->f z 1 1,2
DECF f,d Decrement f by 1 f-1->f Z 1 1,2
RLF f,d Rotate left f through CARRY bit C 1 1,2
RRF f,d Rotate right f through CARRY bit C 1 1,2
COMF f,d Complement f f->d z 1 1,2
Bit-oriented Instructions
BCF f,b Clear bit b in f 0 -> f(b) 1 1,2
BSF f,b Set bitb in f 1-> f(b) 1 1,2
Program Control Instructions
BTFSC f,b Test bit b of f. Skip the following instruction if clear. Skip if f(b) = 0 (2) 3
BTFSS f,b Test bit b of f. Skip the following instruction if set. Skip if f(b) = 1 (2) 3
DECFSZ f,d Decrement f. Skip the following instruction if clear. f-1->dskipifz=1 (2) 1,2,3
INCFSZ f,d Increment f. Skip the following instruction if set. f+1 ->dskipifZ=0 (2) 1,2,3
GOTO k Go to address k -> PC 2
CALL k Call subroutine PC -> TOS, k -> PC 2
RETURN Return from subroutine TOS -> PC 2
RETLW k Return with constant in W k -> W, TOS -> PC 2
RETFIE Return from interrupt TOS -> PC, 1 -> GIE 2
Other instructions
NOP No operation TOS -> PC, 1 -> GIE 1
CLRWDT Clear watchdog timer 0-> WDT, 1->TO, 1->PD TO, PD 1
SLEEP Go into sleep mode 0-> WDT,1->T0O,0->PD TO, PD 1

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

Table 9-1 16Fxx Instruction Set

*1 When an I/O register is modified as a function of itself, the value used will be that value present on the pins themselves.
*2 If the instruction is executed on the TMR register and if d=1, the prescaler will be cleared.
*3 Ifthe PC is modified or test result is logic one (1), the instruction requires two cycles.

Data Transfer Instructions

Data Transfer within the microcontroller takes place between working register W (called accumulator) and a register which represents any location of internal RAM regardless of whether itis
about special function or general purpose registers.

First three instructions move literal to W register (MOVLW stands for move Literal to W), move data from W register to RAM and from RAM to W register (or to the same RAM location with
change on flag Z only). Instruction CLRF clears f register, whereas CLRW clears W register. SWAPF instruction swaps nibbles within f register (one nibble contains four bits).

Arithmetic-logic Instructions

Similar to most microcontrollers, PIC supports only two arithmetic instructions- addition and subtraction. Flags C, DC, Z are automatically set depending on the results of addition or
subtraction. The only exception is the flag C. Since subtraction is performed as addition with negative value, the flag C is inverted after subtraction. It means that the flag C is set ifitis
possible to perform operation and cleared if the larger number is subtracted from smaller one. Logic one (1) of the PIC is able to perform operations AND, OR, EX-OR, inverting (COMF) and
rotation (RLF and RRF).

Instructions which rotate a register actually rotate its bits through the flag C by one bit left (toward bit 7) or right (toward bit 0). The bit shifted from the register is moved to the flag C which is
automatically moved to the bit on the opposite side of the register.

Bit-oriented Instructions

Instructions BCF and BSF clear or set any bitin memory. Although it seems to be a simple operation, itis not like that. CPU first reads the entire byte, changes one its bit and rewrites the
whole byte to the same location.

Program Control Instructions

The PIC16F887 executes instructions GOTO, CALL, RETURN in the same way as all other microcontrollers do. A difference is that stack is independent from internal RAM and has 8 levels.
The ‘RETLW K’ instruction is identical to RETURN instruction, with exception that a constant defined by instruction operand is written to the W register prior to return from subroutine. This
instruction enables Lookup tables to be easily created by creating a table as a subroutine consisting of ‘RETLWK' instructions, where the literals ‘k’ belong to the table. The next step is to
write the position of the literals k (0, 1, 2, 3...n) to W register and call the subroutine (table) using the CALL instruction. Table below consists of the following literals: k0, k1, k2...kn.

Main movlw 2 ;write number 2 to accumulator

call Lookup ;jump to the lookup table

Lookup addwf PCL,f ;add accumulator and program cur
;rent address (PCL)

retlw kO ;return from subroutine (accumulator contains kO)
retlw k1 P
retlw k2 P
FE.
retlw kn ;return from subroutine (accumulator contains kn)

The first line of the subroutine (instruction Abbwr pcL, f)simply adds a literal "k" from W register and table start address which is stored in the PCL register. The resultis real data address in
program memory. Upon return from the subroutine, the W register will contain the addressed literal k. In this case, itis the "k2" literal.

RETFIE (RETurn From IntErrupt) represents a return from interrupt routine. In contrast to the RETURN instruction, it may automatically set the GIE bit (Global Interrupt Enable). When an
interrupt occurs this bit is automatically cleared. Only the program counter is pushed to the stack, which means that there is no auto save of registers’ status and the current status either. The

85/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

problem is solved by saving status of all important registers at the beginning of interrupt routine. These values are retrieved to these registers immediately before leaving the interrupt
routine.

Conditional jumps are executed by two instructions: BTFSC and BTFSS. Depending on the state of bit being tested in the ‘f register, the following instruction will be skipped or not.

Instruction Execution Time

All instructions are single-cycle instructions. The only exception may be conditional branch instructions (if condition is met) or instructions being executed upon the program counter. In both
cases, two cycles are required for instruction execution where the second cycle is executed as a NOP (No Operation). A single-cycle instruction consists of four clock cycles. If 4AMHz
oscillator is used, a nominal time for instruction execution is 1uS. In case of jump, the instruction execution time is 2pS.

Instructions
Legend

f- Any memory location (register);

W - Working register (accumulator);

b - Bit address within an 8-bit register;

d - Destination bit;

[label] - Set of 8 characters indicating start of particular address in the program;
TOS - Top of stack;

[] - Option;

<> -bitfield in register (several bit addresses);
C - Carry/Borrow bit of the STATUS register;
DC - Digit Carry bit of the STATUS register; and
Z - Zero bit of the STATUS register.

ADDLW - Add literal and W

Syntax: [label] ADDLW k

Description: The content of the register W is added to the 8-bit literal k. The resultis stored in the W register.
Operation: (W) + k ->W

Operand: 0 < k <255

Status affected: C,DC,Z

Number of cycles: 1

EXAMPLE:

[label] ADDLW 0x15

Before instruction execution: W=0x10
After instruction: W=0x25

C=0 (the result is not greater than OxFF, which means that Carry has not occurred).

ADDWF - Add W and f
Syntax: [label] ADDWF f, d

Description: Add the contents of the W and f registers.
If d =word=0 the resultis stored in the W register.
Ifd=ford=1 the resultis stored in register f.

Operation: (W) + (f) -> d
Operand: 0<f<127,d[0,1]
Status affected: C,DC,Z
Number of cycles: 1

EXAMPLE 1:

[label] ADDWF REG,w

Before instruction execution: W = 0x17

REG = 0xC2
After instruction: W = 0xD9
REG = 0xC2

C=0 (No carry occurs, i.e. the result is maximum 8-bit long).

EXAMPLE 2:

[label] ADDWF INDF, f

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 86/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Before instruction execution: W=0x17
FSR = 0xC2 Register at address 0xC2 contains the value 0x20
After instruction: W = 0x17

FSR=0xC2, Register at address 0xC2 contains the value 0x37

ANDLW - AND literal with W
Syntax: [label] ANDLW k

Description: The content of the register W is AND’ed with the 8-bit literal k. It means that the result will contain one (1) only if both corresponding bits of operand are ones (1). The resultis
stored in the W register.

Operation: (W) AND k -> W
Operand: 0 < k <255
Status affected: Z
Number of cycles: 1

EXAMPLE 1:

[label] ANDLW Ox5F

Before instruction execution: W = OxA3 ; 1010 0011 (OxA3)
; 0101 1111 (0x5F)

After instruction: W = 0x03 ; 0000 0011 (0x03)
Z = 0 (result is not 0)

EXAMPLE 2:

[label] ANDLW 0x55

Before instruction execution: W OxAA ; 1010 1010 (OxAR)
; 0101 0101 (0x55)

After instruction: W = 0x00 ; 0000 0000 (0x00)
Z = 1(result is 0)

ANDWEF - AND W with f
Syntax: [label] ANDWF f,d

Description: AND the W register with register f.
Ifd=word=0, the resultis stored in the W register.
Ifd=ford=1,the resultis stored in register f.

Operation: (W) AND (f)->d
Operand: 0 < f<127,d[0,1]
Status affected: Z
Number of cycles: 1

EXAMPLE 1:

[label] ANDWF REG, £

Before instruction execution: W = 0x17, REG = 0xC2 ; 0001 0111 (0x17)
; 1100 0010 (0xC2)

After instruction: W = 0x17, REG = 0x02 ; 0000 0010 (0x02)

EXAMPLE 2:

[label] ANDWF FSR,w

Before instruction execution: W = 0x17, FSR = 0xC2 ; 0001 0111 (0x17)
; 1100 0010 (0xC2)

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 87/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

After instruction: W = 0x02, FSR = 0xC2 ; 0000 0010 (0x02)

BCF -BitClear f

Syntax: [label] BCF f, b

Description: Bit b of register f is cleared.
Operation: (0) -> f(b)

Operand: 0<f<127,0<b<7

Status affected: -

Number of cycles: 1

EXAMPLE 1:

[label] BCF REG,7

Before instruction execution: REG = 0xC7 ; 1100 0111 (0xC7)
After instruction: REG = 0x47 ; 0100 0111 (0x47)

EXAMPLE 2:

[label] BCF INDF,3

Before instruction execution: W
FSR = 0xC2
Register at

After instruction: W = 0x17
FSR = 0xC2
Register at

BSF - Bitset

Syntax: [label] BSF f,b

Description: Bit b of register fis set.
Operation: 1 ->f (b)

Operand: 0<f<127,0<b<7
Status affected: -

Number of cycles: 1

EXAMPLE 1:

[label] BSF REG,7

= 0x17

address (FSR)contains the value 0x2F

address (FSR)contains the value 0x27

Before instruction execution: REG = 0x07 ; 0000 0111 (0x07)

After instruction: REG = 0x87

EXAMPLE 2:

[label] BSF INDF, 3

Before instruction execution: W
FSR = 0xC2
Register at

After instruction: W = 0x17
FSR = 0xC2

Register at

BTFSC - Bit test f, Skip if Clear

Syntax: [label] BTFSC f, b

; 1000 0111 (0x87)

= 0x17

address (FSR)contains the value 0x20

address (FSR)contains the value 0x28

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

88/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Description: If bit b of register f is 0, the next instruction is discarded and a NOP is executed instead, making this a two-cycle instruction.
Operation: Discard the next instruction iff(b) = 0

Operand: 0<f<127,0<sbs<7

Status affected: -

Number of cycles: 1 or 2 depending on bitb

EXAMPLE:

LAB_01 BTFSC REG,1 ; Test bit 1 of REG
LAB_02 ; Skip this line if bit = 1
LAB 03 ; Jump here if bit = 0

Before instruction execution: The program counter was at address LAB_01l.
After instruction:

- if bit 1 of REG is cleared, program counter points to address LAB 03.
- if bit 1 of REG is set, program counter points to address LAB 02.

BTFSS - Bit test f, Skip if Set

Syntax: [label] BTFSS f, b

Description: If bit b of register fis 1, the next instruction is discarded and a NOP is executed instead, making this a two-cycle instruction.
Operation: Discard the next instruction if f(b) = 1

Operand: 0<f<127,0<b<7

Status affected: -

Number of cycles: 1 or 2 depending on bitb

EXAMPLE:

LAB701 BTFSS REG,3 ; Test bit 3 of REG
LAB 02 ; Skip this line if bit =0
LAB 03 ; Jump here if bit =1

Before instruction execution: The program counter was at address LAB 01
After instruction:

- if bit 3 of REG is cleared, program counter points to address LAB 03.
- if bit 3 of REG is cleared, program counter points to address LAB_02.

CALL - Calls Subroutine
Syntax: [label] CALL k

Description: Calls subroutine. First the address of the next instruction to execute is pushed onto the stack. Itis the PC+1 address. Afterwards, the subroutine address is written to the
program counter.

Operation: (PC) + 1 -> (Top Of Stack - TOS)
k->PC (10:0), (PCLATH (4 :3))-> PC (12:11)

Operand: 0 < k < 2047
Flag: -
Status affected: 2

EXAMPLE:

LAB_01 CALL LAB_02 ; Call subroutine LAB_02
LAB 02

Before instruction execution: PC = address LAB_ 01
TOS (top of stack) = x

After instruction: ©PC = address LAB_02
TOS (top of stack) = LAB 01

CLRF -Clear f
Syntax: [label] CLRF f

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 89/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Description: The content of register f is cleared and the Z flag of the STATUS register is set.
Operation: 0 -> f

Operand: 0 << 127

Status affected: Z

Number of cycles: 1

EXAMPLE 1:

[label] CLRF TRISB

Before instruction execution: TRISB=0xFF
After instruction: TRISB=0x00
7 =1

EXAMPLE 2:

Before instruction execution: FSR=0xC2
Register at address 0xC2 contains the value 0x33
After instruction: FSR=0xC2
Register at address 0xC2 contains the value 0x00
z =1

CLRW -Clear W

Syntax: [label] CLRW

Description: Register Wiis cleared and the Z flag of the STATUS register is set.
Operation: 0 -> W

Operand: -

Status affected: Z

Number of cycles: 1

EXAMPLE 1:
[label] CLRW

Before instruction: W=0x55
After instruction: W=0x00
z =1

CLRWDT - Clear Watchdog Timer

Syntax: [label]] CLRWDT

Description: Resets the watchdog timer and the WDT prescaler. Status bits TO and PD are set.
Operation: 0 -> WDT 0 -> WDT prescaler 1 ->TO 1 ->PD

Operand: -

Status affected: TO, PD

Number of cycles: 1

EXAMPLE :

[label] CLRWDT

Before instruction execution: WDT counter = x
WDT prescaler = 1:128
After instruction: WDT counter = 0x00
WDT prescaler = 0
TO =1
PD = 1
WDT prescaler = 1: 128

COMF - Complement f

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 90/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
Syntax: [label] COMF f, d

Description: The content of register f is complemented (logic zeros (0) are replaced by ones (1) and vice versa). If d = w or d = 0 the resultis stored in W. If d = f or d = 1 the result is stored in
register f.

Operation: (f) -> d
Operand: 0 < f < 127, d[0,1]
Status affected: Z
Number of cycles: 1

EXAMPLE 1:

[label] COMF REG,w

Before instruction execution: REG = 0x13 ; 0001 0011 (0x13)
; complementing

After instruction: REG = 0x13 ; 1110 1100 (OxEC)
W = 0xEC

EXAMPLE 2:

[label] COMF INDF, f

Before instruction execution: FSR = 0xC2

Register at address (FSR)contains the value O0xAA
After instruction: FSR = 0xC2

Register at address (FSR)contains the value 0x55

DECF - Decrement f

Syntax: [label] DECF f, d

Description: Decrement register f by one. Ifd = wor d = 0, the resultis stored in the W register. Ifd = f or d = 1, the resultis stored in register f.
Operation: (f)- 1 ->d

Operand: 0 < f<127,d[0,1]

Status affected: Z

Number of cycles: 1

EXAMPLE 1:

[label] DECF REG, f

Before instruction execution: REG = 0x01
Z =0
After instruction: REG = 0x00

EXAMPLE 2:

[label] DECF REG,w

Before instruction execution: REG = 0x13
W==x,2=0

After instruction: REG = 0x13
W= 0xl2, z =0

DECFSZ - Decrement f, Skip if 0

Syntax: [label] DECFSZf, d

Description: Decrement register f by one. If d = w or d = 0, the result is stored in the W register. Ifd = f or d = 1, the result is stored in register f. If the result is 0, then a NOP is executed
instead, making this a two-cycle instruction.

Operation: (f)- 1 ->d

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 91/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Operand: 0 < f<127,d[0,1]
Status affected: -
Number of cycles: 1 or 2 depending on the result.

EXAMPLE 1:

MOVLW .10

MOVWE CNT ;10 -> CNT
Loop
...... ;Instruction block
DECFSZ CNT, £ ; decrement REG by one
GOTO Loop ; Skip this line if = 0
LAB 03 ; Jump here if = 0

In this example, instruction block is executed as many times as the initial value of the variable CNT is, which in this example is 10.

GOTO - Unconditional Branch

Syntax: [label] GOTO k

Description: Unconditional jump to the address k.
Operation: (k) -> PC(10:0), (PCLATH(4:3)) -> PC(12:11)
Operand: 0 < k <2047

Status affected: -

Number of cycles: 2

EXAMPLE :

LAB_00 GOTO LAB_01 ; Jump to LAB 01

LAB_01 ; Program continues from here

Before instruction execution: PC = LAB_ 00 address
After instruction: ©PC = LAB 01 address

INCF - Increment f
Syntax: [label] INCF f, d

Description: Increment register f by one.
Ifd=word=0, the resultis stored in register W.
Ifd=ford=1,the resultis stored in register f.

Operation: (f) + 1 -> d
Operand: 0 < f < 127, d[0,1]
Status affected: Z
Number of cycles: 1

EXAMPLE 1:

[label] INCF REG,w

Before instruction execution: REG = 0x10
Ww==x, 72=20

After instruction: REG = 0x10
W = 0x11, z = 0

EXAMPLE 2:

[label] INCF REG,f

Before instruction execution: REG = 0OxFF
Z =0

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

92/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

After instruction: REG = 0x00
z =1

INCFSZ - Increment f, Skip if 0
Syntax: [label] INCFSZf, d

Description: Register fis incremented by one. If d = wor d = 0, the resultis stored in register W. If d = f or d = 1, the result is stored in register f. If the resultis 0, then a NOP is executed
instead, making this a two-cycle instruction.

Operation: (f) + 1 ->d

Operand: 0 < f<127,d[0,1]

Status affected: -

Number of cycles: 1 or 2 depending on the result.

EXAMPLE :

LAB_01 INCFSZ REG,f ; Increment REG by one
LAB_02 ; Skip this line if result is 0
LAB 03 ; Jump here if result is 0

The content of program counter Before instruction execution, PC= LAB_01address.

The content of REG after instruction, REG = REG+1. If REG=0, the program counter points to the address of label LAB_03. Otherwise, the program counter points to address of the next
instruction, i.e. to LAB_02 address.

IORLW - Inclusive OR literal with W

Syntax: [label] IORLW k

Description: The content of the W register is OR’ed with the 8-bit literal k. The result is stored in register W.
Operation: (W) OR (k) -> W

Operand: 0 < k < 255

Status affected: -

Number of cycles: 1

EXAMPLE :

[label] IORLW 0x35

Before instruction execution: W = O0x9A
After instruction: W = OxBF
z =0

IORWF - Inclusive OR W with f
Syntax: [label] IORWF f, d
Description: The content of register f is OR’ed with the content of W register. If d = w or d = 0, the resultis stored in the Wregister. Ifd = f or d = 1, the resultis stored in register f.
Operation: (W) OR (f)->d
Operand: 0<f<127,d->[0,1]
Status affected: Z
Number of cycles: 1

EXAMPLE 1:

[label] IORWF REG,w

Before instruction execution: REG = 0x13,
W = 0x91

After instruction: REG = 0x13,
W =0x93 2 =0

EXAMPLE 2:

[label] IORWF REG,f

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 93/155

16/2/2016

Before instruction execution:
W = 0x91

Introduction: World of microcontrollers - Book: PIC Microcontrollers

REG = 0x13,

After instruction: REG = 0x93,

W = 0x91 Z

MOVF - Move f

Syntax: [label] MOVF f, d

Description: The content of register f is moved to a destination determined by the operand d. Ifd =wor d = 0, the contentis moved to register W. Ifd = f or d = 1, the content remains in
register f. Option d = 1 is used to test the content of register f because this instruction affects the Z flag of the STATUS register.

Operation: (f) ->d

Operand: 0<f<127,d->[0,1]
Status affected: Z

Number of cycles: 1

EXAMPLE 1:

[label] MOVF FSR,w

Before instruction execution:
W=0x00
After instruction: W=0xC2
Z =0

EXAMPLE 2:

[label] MOVF INDF,f

Before instruction execution:
FSR=0xC2,

After instruction: W=0x17
FSR=0xC2,
zZ =1

MOVLW - Move literal to W

Syntax: [label] MOVLW k

=0

FSR=0xC2

W=0x17
register at address 0xC2 contains the value 0x00

register at address 0xC2 contains the value 0x00,

Description: 8-bit literal k is moved to register W.

Operation: k -> (W)
Operand: 0 < k <255
Status affected: -
Number of cycles: 1

EXAMPLE 1:

[label] MOVLW 0x5A

After instruction: W=0x5A
EXAMPLE 2:

Const equ 0x40
[label] MOVLW Const

Before instruction execution:

After instruction: W=0x40

MOVWF - Move W to f

Syntax: [label] MOVWF f

W=0x10

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

94/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Description: The content of register W is moved to register f.
Operation: (W) -> f

Operand: 0 < f< 127

Status affected: -

Number of cycles: 1

EXAMPLE 1:

[label] MOVWF OPTION_ REG

Before instruction execution: OPTION REG=0x20
W=0x40

After instruction: OPTION_ REG=0x40
W=0x40

EXAMPLE 2:

[label] MOVWF INDF

Before instruction execution: W=0x17

FSR=0xC2, register at address 0xC2 contains the value 0x00
After instruction: W=0x17

FSR=0xC2, register at address 0xC2 contains the value 0x17

NOP - No Operation
Syntax: [label] NOP
Description: No operation.
Operation: -

Operand: -

Status affected: -
Number of cycles: 1

EXAMPLE :

[label] NOP ; lus delay (oscillator 4MHz)

Before instruction execution: PC = x
After instruction: PC = x + 1

RETFIE - Return from Interrupt

Syntax: [labels] RETFIE

Description: Return from subroutine. The value is popped from the stack and loaded to the program counter. Interrupts are enabled by setting the bit GIE of the INTCON register.
Operation: TOS -> PC, 1 -> GIE

Operand: -

Status affected: -

Number of cycles: 2

EXAMPLE :

[label] RETFIE

Before instruction execution: PC = x

GIE (interrupt enable bit of the SATUS register) = 0
After instruction: PC = TOS (top of stack)
GIE = 1

RETLW - Return with literal in W

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

95/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
Syntax: [label] RETLW k

Description: 8-bit literal k is loaded into register W. The value from the top of stack is loaded to the program counter.
Operation: (k) -> W; top of stack (TOP) -> PC

Operand: -

Status affected: -

Number of cycles: 2

EXAMPLE :

[label] RETLW 0x43

Before instruction execution: W = x

PC = x

TOS (top of stack) = x
After instruction: W = 0x43

PC = TOS (top of stack)

TOS (top of stack) = TOS - 1

RETURN - Return from Subroutine

Syntax: [label] RETURN

Description: Return from subroutine. The value from the top of stack is loaded to the program counter. This is a two-cycle instruction.
Operation: TOS -> program counter PC.

Operand: -

Status affected: -

Number of cycles: 2

EXAMPLE :
[label] RETURN

Before instruction execution: PC = x

TOS (top of stack) = x
After instruction: PC = TOS (top of stack)

TOS (top of stack) = TOS - 1

RLF - Rotate Left f through Carry

Syntax: [label] RLF f, d

Description: The content of register fis rotated one bit to the left through the Carry flag. If d = w or d = 0, the result is stored in register W. If d = f or d = 1, the result is stored in register f.
Operation: (f(n)) -> d(n+1), f(7) -> C, C -> d(0);

Operand: 0 < f < 127, d[0,1]

Status affected: C

Number of cycles: 1

f Register

bit 7 bit 0

Fig. 9-1 f Register

EXAMPLE 1:

[label] RLF REG,w

Before instruction execution: REG = 1110 0110
c=0

After instruction: REG = 1110 0110
W = 1100 1100
c=1

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

EXAMPLE 2:

[label] RLF REG,f

Before instruction execution: REG = 1110 0110

c=0
After instruction: REG = 1100 1100
c=1

RRF - Rotate Right f through Carry

Syntax: [label] RRF f, d

Description: The content of register f is rotated one bit right through the Carry flag. If d = wor d = 0, the resultis stored in register W. Ifd = f or d = 1, the result is stored in register f.

Operation: (f(n)) -> d(n-1), f(0) -> C, C ->d(7);
Operand: 0<f<127,d->[0,1]
Status affected: C

Number of cycles: 1

f Register

bit 7 bit 0

Fig. 9-2 f Register

EXAMPLE 1:

[label] RRF REG,w

Before instruction execution: REG = 1110 0110
W= x
c=20
After instruction: REG = 1110 0110
W = 0111 0011
c=0

EXAMPLE 2:

[label] RRF REG,f

Before instruction execution: REG = 1110 0110, C = 0
After instruction: REG = 0111 0011, C = 0

SLEEP - Enter Sleep mode

Syntax: [label] SLEEP

Description: The processor enters sleep mode. The oscillator is stopped. PD bit (Power Down) of the STATUS register is cleared. TO bit of the same register is set. The WDT and its

prescaler are cleared.

Operation: 0 -> WDT, 0 -> WDT prescaler, 1 -> TO, 0 -> PD
Operand: -

Status affected: TO, PD

Number of cycles: 1

EXAMPLE :

[label] SLEEP

Before instruction execution: WDT counter = x
WDT prescaler = x

After instruction: WDT counter = 0x00
WDT prescaler = 0

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

97/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

TO
PD

L]
o

SUBLW - Subtract W from literal

Syntax: [label] SUBLW k

Description: The content of register W is subtracted from the literal k. The result is stored in register W.
Operation: k - (W) ->W

Operand: 0 < k <255

Status affected: C,DC,Z

Number of cycles: 1

EXAMPLE :

[label] SUBLW 0x03

Before instruction execution: W = 0x01, C = x, Z = x
After instruction: W = 0x02, C =1, Z = 0 result is positive
Before instruction execution: W = 0x03, C = x, Z = x

After instruction: W = 0x00, C =1, Z = 1 result is 0

Before instruction execution: W = 0x04, C = x, Z2 = X
After instruction: W = OxFF, C = 0, Z = 0 result is negative

SUBWF - Subtract W from f
Syntax: [label] SUBWF f, d

Description: The content of register W is subtracted from register f.
Ifd=word=0,the resultis stored in register W. Ifd =f or d = 1, the resultis stored in register f.

Operation: (f) - (W) ->d
Operand: 0 < f< 127,d [0,1]
Status affected: C,DC,Z
Number of cycles: 1

EXAMPLE :

[label] SUBWF REG, f

Before instruction execution: REG = 3, W= 2, C = x, Z = X
Z

After instruction: REG =1, W= 2, C =1, = 0 result is positive

Before instruction execution: REG =

2, W=2, C=1x, Z =%
After instruction: REG =0, W= 2, C =1, Z

= 1 result is 0

Before instruction execution: REG =1, W= 2, C = x, Z = X
After instruction: REG = O0xFF, W =2, C =0, Z = 0 result is negative
SWAPF - Swap Nibbles in f
Syntax: [label] SWAPF f, d
Description: The upper and lower nibbles of register f are swapped. If d = wor d = 0, the result is stored in register W. If d = f or d = 1, the result is stored in register f.
Operation: f(0:3) -> d(4:7), f(4:7) -> d(0:3);
Operand: 0<f<127,d[0,1]
Status affected: -
Number of cycles: 1

EXAMPLE 1:

[label] SWAPF REG,w

Before instruction execution: REG=0xF3

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

After instruction: REG=0xF3
W = 0x3F

EXAMPLE 2:

[label] SWAPF REG,f

Before instruction execution: REG=0xF3
After instruction: REG=0x3F

XORLW - Exclusive OR literal with W

Syntax: [label] XORLW k

Description: The content of register W is XOR’ed with the 8-bitliteral k . The resultis stored in register W.
Operation: (W) XOR. k -> W

Operand: 0 < k <255

Status affected: Z

Number of cycles: 1

EXAMPLE 1:

[label] XORLW OxAF

Before instruction execution: W = 0xB5 ; 1011 0101 (0xB5S)
; 1010 1111 (OxAF)

After instruction: W = 0x1A ; 0001 1010 (0x1lA)

Z =0
EXAMPLE 2:
Const equ 0x37
[label] XORLW Const
Before instruction execution: W=0xAF ; 1010 1111 (OxAF)

Const = 0x37 ; 0011 0111 (0x37)

After instruction: W = 0x98 ; 1001 1000 (0x98)

XORWF - Exclusive OR W with f
Syntax: [label] XORWF f, d

Description: The content of register f is XOR’ed with the content of register W. A bit of result is set only if the corresponding bits of operands are different. If d = w or d = 0, the result is stored
in register W. If d = for d = 1, the result is stored in register f.

Operation: (W) XOR. k ->d
Operand: 0 < f< 127, d[0,1]
Status affected: Z
Number of cycles: 1

EXAMPLE 1:

[label] XORWF REG, £

Before instruction execution: REG = OxAF, W = 0xB5 ; 1010 1111 (OxAF)
; 1011 0101 (0xB5)

After instruction: REG = 0x1A, W = 0xB5 ; 0001 1010 (0x1A)

EXAMPLE 2:

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 99/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

[label] XORWF REG,w

Before instruction execution: REG = 0xAF, W = 0xB5 ; 1010 1111 (OxAF)
; 1011 0101 (0OxB5)

After instruction: REG = 0OxAF, W = O0x1A ; 0001 1010 (O0x1A)

In addition to the preceding instructions, Microchip has also introduced some other instructions. To be more precise, they are not instructions as such, but macros supported by MPLAB.
Microchip calls them "Special Instructions” since all of them are in fact obtained by combining already existing instructions.

INSTRUCTION DESCRIPTION EQUIVALENT INSTRUCTION STATUS AFFECTED

ADDCF f,d Add with carry BTFSC STATUS,C
INCF

ADDDCF f,d Add with Digit Carry BIT,\EE STATUS,DC
B k Branch GOTO
BTFSC

BC k Branch on Carry GOTO STATUS,C
- BTFSC

BDC k Branch on Digit Carry GOTO STATUS,DC
BTFSS

BNC k Branch on No Carry GOTO STATUS,C
BTFSS

BNDC k Branch on No Digit Carry GOTO STATUS,DC
BTFSS

BNZ k Branch on No Zero GOTO STATUS,Z
BTFSC

BZ k Branch on Zero GOTO STATUS,Z

CLRC Clear Carry BCF STATUS,C

CLRDC Clear Digit Carry BCF STATUS,DC

CLRZ Clear Zero BCF STATUS,Z
MOVFW f Move File to W MOVF

SETC f Set Carry BSF STATUS,C

SETDC Set Digit Carry BSF STATUS,DC

SETZ Set Zero BSF STATUS,Z

SKPC Skip on Carry BTFSS STATUS,C

SKPDC Skip on Digit Carry BTFSS STATUS,DC

SKPNC Skip on No Carry BTFSC STATUS,Z

SKPNDC Skip on No Digit Carry BTFSC STATUS,DC

SKPNZ Skip on Non Zero BTFSC STATUS,Z

SKPZ Skip on Zero BTFSS STATUS,Z

SUBCF £ d Subtract Carry from File B;Egg STATUS,C

SUBDCF f d Subtract Digit Carry from File Bg;gg STATUS,DC
TSTF f Test File MOVF

«— previous chapter | table of contents | next chapter —

Book: PIC Microcontrollers
TOC Introduction Ch.1 Ch.2 Ch.3 Ch4. Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 App. A App. B App. C

Appendix A: Programming a Microcontroller

Microcontrollers and humans communicate through the medium of the programming language called Assembly language. The word Assembler itself does not have any deeper meaning, it
corresponds to the names of other languages such as English or French. More precisely, assembly language is only a passing solution. In order that the microcontroller can understand a
program written in assembly language, it must be compiled into a language of zeros and ones. Assembly language and Assembler do not have the same meaning. The first one refers to the
setof rules used for writing program for the microcontroller, while the later refers to a program on a personal computer used to translate assembly language statements into the language of
zeros and ones. A compiled program is also called Machine Code. A "Program" is a data file stored on a computer hard disc (or in memory of the microcontroller, if loaded) and written
according to the rules of assembly or some other programming language. Assembly language is understandable for humans because it consists of meaningful words and symbols of the
alphabet. Let us take, for example the command "RETURN" which is, as its name indicates, used to return the microcontroller from a subroutine. In machine code, the same command is
represented by a 14-bit array of zeros and ones understandable by the microcontroller. All assembly language commands are similarly compiled into the corresponding array of zeros and
ones. A data file used for storing compiled program is called an "executive file", i.e. "HEX data file". The name comes from the hexadecimal presentation of a data file and has a suffix of "hex
as well, for example "probe.hex". After has been generated, the data file is loaded into the microcontroller using a programmer. Assembly language programs may be written in any program
for text processing (editor) able to create ASCII data files on a hard disc or in a specialized work environment such as MPLAB described later.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 100/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

ELEMENTS OF ASSEMBLY LANGUAGE

A program written in assembly language consists of several elements being differently interpreted while compiling the program into an executable data file. The use of these elements
requires strict rules and itis necessary to pay special attention to them during program writing in order to avoid errors.

ASSEMBLY LANGUAGE SYNTAX

As mentioned, it is necessary to observe some specific rules in order to enable the process of compiling into executive HEX code to run without errors. Compulsory rules explaining how
sequences of expressions are put together to form the statements that make up an assembly language program are called syntax. There are only several of them:

« Every program line may consist of a maximum of 255 characters;

« Every program line that is to be compiled must start with a symbol, label, mnemonics or directive;

« Text following the mark ";" in a program line represents a comment which is ignored by the assembler (not compiled); and

« All the elements of one program line (labels, instructions etc.) must be separated by at least one space character. For the sake of better clearness, a push-button
TAB is commonly used instead of it, so that it is easy to delimit columns with labels, directives etc. in a program.

LABELS

Alabel represents a textual version of some address in ROM or RAM memory. Each label has to start in the first column with a letter of alphabet or "_"and may consist of maximum of 32

characters. Besides, it is easily used:

« It is sufficient to enter the name of a label instead of a 16-bit address in instruction which calls some subroutine or a jump. The label with the same name should
also be written at the beginning of a program line in which a subroutine starts or where a jump should be executed. As a general rule, labels have easily
recognizable names.

During program compiling, the assembler will automatically replace the labels by the corresponding addresses.

P et

H
—

iFirst column

Correctly written label:

Start
End
P123

Incorrectly written label:

Start
24rele

COMMENTS

Acomment is often an explanatory text written by the programmer in order to make a program clearer and easier to understand. Itis not necessary to comment every line. When three or four
lines of code work together to accomplish some higher level task, itis better to have a single higher level comment for the group of lines. Therefore, itis added if needed and has to start with
"". Comments added to assembly source code are not compiled into machine code.

INSTRUCTIONS

Instructions are defined for each microcontroller family by the manufacturer. Therefore, itis up to the user to follow the rules of their usage. The way of writing instructions is also called
instruction syntax. The instructions "mov1p" and "gotto", in the following example, are recognized by the PIC16F887 microcontroller as an error since they are not correctly written.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 101/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Correctly written commands:

movlw H' FE’
goto Start

Incorrectly written commands:

movlp H' FF’
gotto Start

OPERANDS

An operand is a value (an argument) upon which the instruction, named by mnemonic, operates. The operands may be a register, a variable, a literal constant, a label or a memory address.

Using operand :

movliw H 01F -
movwf LEVEL

|
operand as a variable LEVEL operand as a constant

stored in the microcontroller
memaory

DIRECTIVES

Unlike instructions being written to on-chip program memory after compilation, directives are commands of assembly language itself and do not directly affect the operation of the
microcontroller. Some of them must be used in every program while others are only used to facilitate or enhance the operation. Directives are written to the column reserved for instructions.
The rule which must be observed allows only one directive per program line.

This section covers only a few of the most commonly used directives. It would certainly take up too much space and time to describe all the directives recognized by the MPLAB program.
Anyway, a complete list containing all directives which the MPLAB assembler can understand is provided in Help.

PROCESSOR Directive

This directive must be written at the beginning of each program. It defines the type of the microcontroller which the program is written for. For example:

Processor 16£887

EQU directive

This directive is used to replace a numeric value by a symbol. In this way, some a specific location in memory is assigned a name. For example:
MAXIMUM EQU H’25’

This means that a memory location at address 25 (hex.) is assigned the name "MAXIMUM". Every appearance of the label "MAXIMUM" in the program will be interpreted by the assembler
as the address 25 (MAXIMUM = H’25’). Symbols may be defined this way only once in a program. That this directive is mostly used at the beginning of the program.

ORG directive

This directive specifies a location in program memory where the program following directive is to be placed. For example:

ORG 0x100
START

ORG 0x1000
TABLE

This program starts at location 0x100. The table containing data is to be stored at location 1024 (1000h).

END directive

Each program must be ended by using this directive. Once a program encounters this directive, the assembler immediately stops compiling. For example:

END ;End of program

\$INCLUDE directive

The name of this directive fully indicates its purpose. During compiling, it enables the assembler to use data contained in another file on a computer hard disc. For example:

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 102/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
#include <pl6£887.inc>

CBLOCK and ENDC directives

All variables (their names and addresses) that will be used in a program must be defined at the beginning of the program. Because of this it is not necessary to specify the address of each
specified variable later in the program. Instead, it is enough to specify the address of the first one by using directive CBLOCK and list all others afterwards. The compiler automatically
assigns these variables the corresponding addresses as per the order they are listed. Lastly, the directive ENDC indicates the end of the list of variables.

CBLOCK 0x20
START ; address 0x20
RELE ; address 0x21
STOP ; address 0x22
LEFT ; address 0x23
RIGHT ; address 0x24
ENDC

IF, ENDIF and ELSE directives

These directives are used to create so called conditional blocks in a program. Each of these blocks starts with the directive IF and ends with the directive ENDIF or ELSE. A statementor a
symbol (in parentheses) following the directive IF represents a condition which determines which part of the program is to be compiled:

« If the statement is correct or the value of a symbol is equal to one, program compiles all instructions written before directive ELSE or ENDIF; and
« If the statement is not correct or the value of a symbol is equal to zero, only instructions written after directives ELSE or ENDIF are to be compiled.

Example 1:
IF (VERSION>3)
CALL Table_2
CALL
ENDIF

If the program is released after the version 3 (statement is right) then subroutines "Table 2" and "Extension" are executed. If the statementin parentheses is wrong (VERSION<3), two
instructions calling subroutines are ignored and will not be compiled therefore.

Example 2:

If the value of symbol "Model" is equal to one then first two instructions after directive IF are compiled as well as instructions after directive ENDIF (all instructions between ELSE and ENDIF
are ignored). Otherwise, if Model=0 then instructions between IF and ELSE are ignored, whereas instructions after directive ELSE are compiled.

IF (Model)
MOVFW BUFFER
MOVWF MAXIMUM
ELSE
MOVEW BUFFER1
MOVWE MAXIMUM
ENDIF
BANKSEL directive

In order to access an SFR register it is necessary to select the appropriate bank in RAM memory by using bits RP0 and RP1 of the STATUS register. This directive is used in this case.
Simply, since "inc" data file contains the list of all registers along with their addresses, the assembler knows which bank corresponds to which register. After encountering this directive,
assembler selects the bits RP0 and RP1 for the specified register on its own. For example:

BANKSEL TRISB

CLRF TRISB

MOVLW B’01001101”
BANKSEL PORTB

MOVWE PORTB

EXAMPLE OF HOW TO WRITE A PROGRAM

The following example illustrates what a simple program written in assembly language looks like.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 103/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

;Program te initialize port B and set its pins to logic cne (1)

;Version: 1.0 Date: 03.05.2007 MCU: 16F887 Programmer: John Smith
Header g
;Configuring microcontroller
PROCESSOR 16£887
include “picl6£B8B7inc”
Directive

» _CONFIG_CP_OFF&_WDT_OFF&_ PWRTE_ON& XT_OSC

Gomment —* | ;Sstart of program

ORG 0x00 ;Reset vactor
goto Main

Operand o ;Interrupt vector

goto M3 ;No interrupt routine
Label ™ | Main ;Start of program
banksel TRISBE ;Select bank containing TRISB
clrf TRISB ;Port B is configured as output
Instruction _ banksel PORTE ;Select bank containing PCORTB
gaaP i ¥ Toviw) Oxff ;w=1111 1111
MoVwWE PORTE ;PORTE=1111 1111
Ll gote L1 ;/Go to label L1 or remain here
End /End of program

Apart from the regular rules of assembly language, there are also some unwritten rules which should be observed during program writing. One of them is to write in a few words at the
beginning of a program what the program’s name is, what it is used for, version, release date, type of the microcontroller itis written for and the name of the programmer. Since this
information is not of importance for the assembler, it is written as a comment which always starts with semicolon ;' and can be written in a new line or immediately after a command.

After writing this general comment, it is time to select the microcontroller by using directive PROCESSOR. This directive is followed by another one used to include all the definitions of the
PIC16F887 microcontroller’s internal registers in the program. These definitions are nothing but the ability to address port B and other registers as PORTB instead of 06h, which makes the
program clearer and more legible.

In order that the microcontroller will operate properly, a several parameters such as the type of oscillator, state of the watch-dog and internal reset circuit must be defined. Itis done by
utilizing the following directive:

_CONFIG CP OFF& WDT OFF&PWRTE ON&XT OSC

When all necessary elements are defined, the process of program writing can start. First and foremost, it is necessary to specify the address from which the microcontroller starts when the
power goes on (org exee) as well as the address from which the program proceeds with execution if an interrupt occurs (org exe4). Since this program is very simple, itis enough to use
command "goto Main" in order to direct the microcontroller to the beginning of the program. The next command selects memory bank 1 in order to enable access to the TRISB register to
configure port B as output (banksel TRISB). The main program ends by selecting memory bank 0 and setting all port B pins to logic one (1)(movlw exFF, movwf PORTB).

Itis necessary to create a loop to keep program from "getting lost" in case an error occurs. For this purpose, there is an endless loop executed all the time while the microcontroller is
switched on.

"end" is required at the end of every program to inform the assembler that there are no more commands to be compiled.

DATA FILES RESULTING FROM PROGRAM COMPILING
The result of compiling a program written in assembly language are data files. The mostimportant and most commonly used data files are:

« Executive data file (Program_Name.HEX);
« Error data file (Program_Name.ERR); and
« List data file (Program_Name.LST).

The first file contains compiled program which is loaded into the microcontroller. Its contents give no information of importance to the programmer so it will not be discussed here. The
second file contains errors made in writing process and detected by the compiler during compiling process. Errors can be detected in list data file, which takes more time, so the error data
file is more suitable for long programs.

The third file is the most useful for the programmer. It contains lots of information on commands and variables locations in on-chip memory as well as error signalization. There is a symbol
table at the end of each data file list containing all the symbols used in a program. Other useful elements of list data file are memory usage maps and error statistics provided at the very end
of the file list.

MACROS AND SUBROUTINES

The same sequence of computing instructions is usually used repeatedly within a program. Assembly language is very demanding. The programmer is required to take care of the last little
detail when writing a program, because only one wrong command or label name may cause the program to not work properly or it may not work at all. Therefore, itis less tedious and less
error-prone to use a sequence of instructions as a single program statement which works properly for sure. To implement this idea, macros and subroutines are used.

MACROS

A macro contains programmer-defined symbols that stand for a sequence of text lines. Itis defined by using directive macro which names macro and arguments if needed. Macro must be
defined prior itis used. Once a macro has been defined, its name may be used in the program.When the assembler encounters macro’s name, it replaces it by the appropriate sequence of
instructions and processes them just as though they have appeared in the program. Many different macro-instructions are available for various purposes, eliminating some of the
repetitiveness of the programming, as well as simplifying the writing, reading and understanding of the program. The simplest use of macros may be giving a name to an instruction
sequence being repeated. Let us take, for example, global interrupt enable procedure, SFRs' bank selection.

macro name macro argl, arg2...

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 104/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
sequence of instructions
endm
The following example shows four macros. The first two macros select banks, the third one enables interrupt, whereas the fourth one disables interrupt.

bank0 macro ; Macro bank0
bcf STATUS, RPO ; Reset RPO bit
bcf STATUS, RP1 ; Reset RP1 bit
endm ; End of macro

bankl macro ; Macro bankl
bsf STATUS, RPO ; Set RP0O bit
becf STATUS, RP1 ; Reset RP1 bit

endm ; End of macro

enableint macro ; Global interrupt enable
bsf INTCON, 7 ; Set bit
endm ; End of macro

disableint macro ; Global interrupt disable
bcf INTCON, 7 ; Reset bit
endm ; End of macro

Macros defined in this way are saved in a particular data file with extension INC which stands for INCLUDE data file. As seen, these four macros do not have arguments. However, macros
may include arguments if needed.

The following example shows macros with arguments. Pin is configured as input if the corresponding bit of the TRIS register is set to logic one (bank1). Otherwise, itis configured as output.

input macro argl,arg2 ;Macro Input
bankl ;Bank containing TRIS registers
bsf argl,arg2 ;Set the specified bit (l=Input)
bank0 ;Macro for bank 0 selection
endm ;End of macro

output macro argl,arg2 ;Macro Output
bankl ;Bank containing TRIS registers
bef argl,arg2 ;Clear the specified bit (0=Output)
bank0 ;Macro for bank 0 selection
endm ;End of macro

Macro with arguments may be called in the following way:
output TRISB,7 ;Pin RB7 is configured as output

When calling this macro, the first specified argument TRISB is replaced by the firstargument arg1 in macro definition. Similarly, number 7 is replaced by the argument arg2, and the
following code is generated:

bsf STATUS, RPO ;Set RPO bit = BANKI
bcf STATUS, RP1 ;Reset RPO bit = BANKI

bcf TRISB,7 ;Configure RB7 as output
bcf STATUS, RPO ;Clear RPO bit = BANKO
bcf STATUS,RP1 ;Clear RP1 bit = BANKO

Itis clear atfirst sight that the program becomes more legible and flexible by using macros. The main disadvantage of macro is that it occupies a lot of memory space because every macro
name in a program is replaced by its predefined code. Owing to the fact that programs often use macro, everything is more complicated if itis long.

callc macro label ;Macro callc

local Exit ;Define local Label within macro

bnc Exit ;If C=0 jump to Exit

call 1label ;If C=1 call subroutine at address Label (out of macro)
Exit ;Local Label within macro

endm ;End of macro

In the event that a macro has labels, they must be defined as local ones by using directive local. The given example contains macro which calls a subroutine (call 1abel in this case) if the
Carry bit of the STATUS register is set. Otherwise, the first following instruction is executed.

SUBROUTINES

Asubroutine contains a sequence of instructions, begins with a label (subroutine_name) and ends with command return or retiw. The main difference comparing to macro is that subroutine

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 105/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

is not replaced by its code in the program, but program jumps to subroutine to execute it. It happens every time the assembler encounters command call Subroutine_name in the program.
On the command return, it leaves a subroutine and continues execution from where it left off the main program. Subroutine may be defined both prior to or upon the call.

Label

;subroutine name is

‘Label’

sequence of instructions. . .
sequence of instructions. . .
sequence of instructions. . .

return or retlw

As seen, concerning macros, the input and output arguments are of greatimportance. Concerning subroutines, itis not possible to define arguments within the subroutine itself. However,
variables predefined in the main program may be used as subroutine arguments.

Alogical sequence of events is as follows: defining variables, calling subroutine which uses them and at the end reading variables changed upon the execution of subroutine.

The program in the following example performs addition of two 2-byte variables ARG1 and ARG2 and moves result to the variable RES. When 2-byte variables are used, it is necessary to

define higher and lower byte for each of them. The program itself is very simple. It first adds lower bytes of variables ARG1 and ARG2 and higher afterwards. If the sum of addition of two
lower bytes is greater than 255 (maximal byte value) the remainder is added to the RESH variable.

; Program to add two 16-bit numbers

; Version: 1.0 Date:

PROCESSOR 16£887
#include "pl6£f887.inc" ; Microchip INC da
_ CONFIG CP OFF & WDT OFF & PWRTE ON & XT OSC

Cblock
ARG1H
ARG1L
ARG2H
ARG2L
RESH
RESL
endc
ORG
goto
Start
movlw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
Main
call
Loop goto
Addle
clrf
mov
addwf
movwf
btfsc
incf

movf
addwf
addwf
return
end

In Short

0x20

0x00
Start

0x01
ARG1H
0x04
ARG1L
0x07
ARG2H
0x05
ARG2L

Addle
Loop

RESH
ARGIL, w
ARG2L, w
RESL
STATUS, C
RESH, f

ARG1H,w
ARG2H, w
RESH, £

;

;

;

April 25, 2007 MCU:PIC16F8

Defining processor

Beginning of RAM
Argument 1 higher byte
Argument 1 lower byte
Argument 2 higher byte
Argument 2 lower byte
Result higher byte
Result lower byte

End of variables

Reset vector

Write values to variab
ARG1=0x0104

ARG2=0x0705

Main program

Call subroutine Addle
Remain here
Subroutine to add two
RESH=0

w=ARG1L

w=w+ARG2L

RESL=w

Is the result greater
If greater, increment

w=ARG1H

w=w+ARG2

RESH=w

Return from subroutine

End of program

87

tabase

les

16-bit numbers

than 25572
RESH by one

The main difference between macros and subroutines is that macro is after compiling replaced by its code (enables the programmer to type less). It may also have arguments while
subroutine uses less memory, but does not have arguments.

MPLAB

MPLAB is a Windows program package which enables easy program writing as well as easy program development. Itis best to describe it as development environment for a standard
program language designed for PC programming. MPLAB technically simplifies some operations consisting of a lot of parameters, which, until the IDE environment* appeared, were
executed from the command line. However, tastes are different and there are some programmers who prefer standard editors and command line compilers. Every program written in MPLAB
is clear, but there are also help documentation- justin case.

INSTALLING MPLAB

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

106/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
MPLAB consists of several parts:
« The program which sorts data files of the same project into one group (Project Manager);

« program for text generating and processing (Text Editor); and
¢ simulator used to simulate the operation of a program loaded into the microcontroller.

Besides, there are also builtin programmers such as PICStart Plus and ICD (In Circuit Debugger) that can be used to program software into PIC microcontroller device. Since not being the

subject of this book, they are mentioned as options only.
In order to start MPLAB, your PC should contain:

« PC compatible computer belonging to class 486 or better;
* Any Windows operating system;

* VGA graphic card;

« 8MB memory (32MB recommended);

« 200MB available hard disc; and

* A mouse.

MPLAB installation comes first. Data files from MPLAB CD should be copied to a hard disc. The process of installation is similar to almost all other Windows program installations. First of all
a welcome window appears, then options to select and at last installation itself. A message notifying that the program is successfully installed and ready for use appears. Are you ready?

Steps to follow prior the installation:

1. Start Microsoft Windows;

2. Insert the CD into CD ROM,;

3. Click START and select option RUN;

4. Click BROWSE and select CD ROM drive; and
5. Find folder MPLAB on CD ROM.

Everything is ready now to startinstallation. The following pictures describe the installation steps.

Install_MP7é0a.exe
Setup Launcher
Microchip Technology Inc.

Click on this icon to start up the process...

MPLAB Toals v7 B0 Setuo iz preparing the InstalS beld Wizard.
which will guitle yous Hiough the peogiam setup process. Please

Checking Dpeiafing System Version

(CCTTTLITIIITIIITIIIIT) }

Something is going on... The picture coming up indicates that the process of installation has just started!

MPLAB Tools ¥7. 60

ﬁl Next window contains the word "Welcome". Need
— | explanation?

NPLAR Tooks 7.60 Instalition Actually, the program reminds you to close all active

programs in order to not interfere with the installation

‘wigloomea o the MPLAB® T ool Instllation Frogram process. Next- of course!

It 38 stiongly recommanded that pou lollow ess diechons

1. Quit 2k appication: befors instaling this 3

2 Urmnstall ol peevions MPLAB Toolk By versions

3 Dusable sy arteving softveee running on the machne

A When uging the WEB Instal, uss the Browsss Inbeinet
Dpticn: to Delete Files from the Inteset Temp Divacton:

[iy | e |

Prior to continue, you have to accept the MPLAB
software license conditions. Select the option "I

Licenss Agiesment
Please read the lolowing hosnse ageement caishully Q MII:HI:H:HP accept” and click NEXT.
IMPORTANT. A

VOU MUST ACCEPT THE TERMS AND CONDITIONS OF THIS LICENSE
ACREEMENT TO RECEIVE A LICENSE FOR THE ACCOMPANYING
SOFTWARE. TO ACCEFT THE TERMS OF THIS LICENSE, CLICK “1
ACCEPT™ OR OFEN THIS PACKAGE AND PROCEED WITH THE
DOWHLOAD OR INSTALL. IF YOU DO HOT ACCEPT THESE LICENSE
TERMS, CUCK “] DO NOT ACCEFT,” OR DO HOT OPEH THIS PACKACE,
COWHLOAD, OR INSTALL THIS SOFTWARE.

MPLAB ™ IDE LICENSE

= | accept the teams of the hcenes agreemert Pl
| do'nok accept the berms of the kcense agisomenk

¢ Back Newt > Careel |

Do you want to install the entire software? Yes. Next...

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

107/155

16/2/2016

MPLAB Tools 7. 60

Setup Type
Select the seiup lype bo inital Q MicrocHIP

Pleaze sslact 3 setup ype.

* Complele
ﬁ Al progeem tealiees wil be mstaled (Requres the most disk space: |

" Custom

Selach which program features pou want instaled. Recommendad for
| advanced users

< Back [FE Cercel |

MPLAB Tools v7.60

Chooze Destinalion Location

et o st st i s ﬁ\ MicrocHIP

Setup willinstal MPLAE Tocks ¥7 60in the foiowing foldes

To instad o this fakdes, cick Nest. To install 1o & diffesent foldes, cick Browse snd sefect
arcthe folde.

Desstirvation Foldes -

C:\Program Files\Microchiph Browse.,

¢ Back Nest > Careel |

MPLAB Tools v7. &0
Apglication Maestio Licenze

Stait Copying Files

Selup Stalus

MPLAE Took: w760 i-corfiguing wour rew soltwane instalaton.

g
§f SEledef

CA_AMaciochiphMPASM St Tempiate\Dbyect\RFS0SAG TMPOLASM

A8\ MicrocHiP

Introduction: World of microcontrollers - Book: PIC Microcontrollers

Similar to other programs, MPLAB should be also
installed into a folder. It may be any folder on any
hard disc. Ifitis not necessary to make changes,
select the specified address and click Next.

Another license, another acceptance of options
specified by the computer... Next, Next...

Be patient!

_ Coneel |

MPLAB Tools »

InstallShield Wizaid Complele

The Install5hisld \Wizaed has successhilp nstaked MPLAR
Tool +7 6 Before you can wse the pogram, you must restar
oL cdmmputel

L :Yua_.'l wa'ij to ras_i&l nyomnow
Mo | vl restant iy compter later

Remave an dieks from Eher dives. and then click Finish ta
complete etup

[Fo] oo |

Finally! This is what you have been waiting for. Click
Finish. The computer will be restarted along with the
program saved on hard disc. Everything is OK!

Click the MPLAB desktop icon in order to start the program and learn about it.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

108/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Bank 0
As seen, MPLAB is similar to most Windows programs. Apart from the working area, there are menus (contains options: File, Edit etc.), toolbars (contains differenticons) and a status bar at
the bottom of the window. Similar to Windows, there is a rule to have shortcuts for the most commonly used program options created in order to easily access them and speed up operation

therefore. These shortcuts are actually icons below the menu bar. In other words, all options contained in the toolbar are contained in the menu too.

PROJECT-MAKING
Follow these steps to prepare program for loading into the microcontroller:

1. Make a project;
2. Write a program; and
3. Compile it.

In order to make a project, itis necessary to click the option "PROJECT" and then "PROJECT WIZARD". A welcome window appears.

| X
Welcome!
This wizard helps you create or configure & new MPLAE IDE
project,
To continue, click Nest.
Back | Mewt> | [Cancel | [Hep |

Keep on project-making by clicking NEXT. Then
select the microcontroller you will be using.

In our case, itis PIC16F887 microcontroller.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 109/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Project Wizard
Step One: FE
Select a device dfé‘:'

Atthe end, the project is assigned a name which usually indicates the purpose and the content of the program being written. The project should be moved to the desired folder. It is best that

the folder associates with PIC microcontrollers (See figure).

Project Wizard

Step Two:
Select a language tootule

Active Toclsue:

Tookute Contents

thies {mpasmwen exol

MPLIB Libaatian mpl. avs]

Laesbon

[Hebl MpSutelmitised |

Project Wizard

MPASM b
MPLINE Object Linkes [mpink. exs| Step Thies:
Craate a new pioject, of 1econfigure the active project 7

| C\Progiam Files\MiciochipWPASM 5wl (3) Camale Mow Proect File

oo) vow> J (ot J [

Documents contained in the project do not always need to be written in MPLAB. Documents written by some other program may also be included in the project. In this example, there are no

such documents. Just click Next.

Project Wizard

Step Four
M enisting ez o pour project

#aga Project Wizard
Bl

i

. Summary

Chek. Firih! 1o create/configue the praject with thass
paramebers.

Pramect Paameles

Dievicet PICIEFEST

Toolwbe: Microchip MPASH T oolsute
File: CEAPIC progktivProba. mep

A new workspace wil be created, and the rew peoject added
b thiat werkzpace

[cBock J[_Frwh] [Concel | [Hep |

Click FINISH to complete the project. The window itself contains project parameters.

WRITING A NEW PROGRAM

When the project is created, a window shown in figure below appears.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

110/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

ot e Ve DO & Checkoum:

The next step is to write a program. Open a new document by clicking File>New. Text Editor in MPLAB environment appears.

Save the document in the folder D:\PIC projects by using the File>Save As command and name it "Blink.asm" indicating that this program is to be an example of port diode blinking.
Obviously you can locate you files wherever you wish, in whichever hard drive you wish. Using a common directory to store all your different projects and subdirectories in makes good
sense.

Example:

D:\Pic Projects
LED Flash Project
All associated files
Event Count Project
All associated files
LED Scanning Project
All associated files

After the "Blink.asm" is created and saved, it should
be included in the project by right click on the "Source

[5 (B Probasmcp Files" option in the "Proba.mcw" window. After that, a
3 Source Fles EEEEER| smal window with two options appears. Select the
| Header Fies " S m
3 Object Fle= first one "Add Files".
(20 Liteary Flas
=0 inker Seriphs
(23 cther Fles

Add Files to Project

Lock i | £ PIC prosekts R

L (23 Haader Files
Fistoftype: | Assembly Sourcs Fies [asm) (0 Object Fies
—_— (Library Fles
dumpto: | ProjectDiectny [Liker Serpts
[Riamermber thiz seiting (3 Other Fies

() Ao Let MPLAB IDE guess
) Uszae: Fin{z) were cisatad especiali for this proy
() Spetem: Fla(s] are extemal to propect. ure sheok

Click "Blink" to include the document Blink.asm into the project.

Program writing example

The program writing procedure cannot start until all previous operations have been performed. Program written below is a simple illustration of project-making.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 111/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

;Program to set port B pins to logic one (1).
;Version: 1.0 Date: April 25,2007 MCU: PIC16F887 Programmer: John Smith

;***** Declaration and configuration of the microcontroller *****
PROCESSOR 16£887
#include "pl6£887.inc"
_ _CONFIG CP OFF & WDT OFF & PWRTE ON & XT OSC

;¥**** Variable declaration ***x**

Cblock 0x20 ; First free RAM location
endc ; No variables

;i ***** Program memory structure ****x*

ORG 0x00 ; Reset vector
goto Main ; After reset jump to this location
ORG 0x04 ; Interrupt vector
goto Main ; No interrupt routine

Main ; Start the program
banksel TRISB ; Select bank containing TRISB
clrf TRISB ; Port B is configured as output
banksel PORTB ; Select bank containing PORTB
movlw Oxff ; W=FF
movwf PORTB ; Move W to port B

Loop goto Loop ; Jump to label Loop
End

The program should be written to the ‘Blink.asm’ window or copied from disc by means of options copy/paste. When copied, the program should be compiled into executable HEX format by
using option PROJECT -> BUILD ALL. A new window appears. The last sentence is the mostimportant because it tells us whether compiling has succeeded or not. Clearly, 'BUILD
SUCCEEDED’ message means that no error occurred and compiling has been successfully done.

In case an error occurs, itis necessary to click twice on the message referring to itin the ‘Output’ window, which automatically switch you over to assembly program, directly to the line where
the error has occurred.

w Proba - MPLAB IDE v7.60
Fin Edb View Project Cebugger Programwer Took Configure Wirdow Help
D@l " S8 SH®T | Reease o @B O &g | Checksum: 026

sProgram za setovanje pinova porta B na logicku Jedindou.
Werzija: 1.0 Dacusi 25,04,2007 mu-‘?lclilﬁ'ﬂ Pisgac: Fetar Petsovic

seesss Daklarneija L konfigurisenis sikrekenteoleza **e=e

FROCESSOR. L6 EBET
#include “plEfss?.inc”

__CONFIG _CP_OFF & _MDT_OFF & _PUDTE_ON & _NT_OSC
#***** Deklaracila promenjiwah Treer

Eblock OROC ; Pocetsh PAM-a
and= : Hewms prosanliswih

FveeR foruRturs prograsske Remorijs Teeee

oRG D200 I Ramst vesesr
gota Madn ; Posle reseca shoci na ovu lokaciju

L o4 5 Tacerapr wescor
gaEs Madn BERA intarapt uting

Hain Pocetak progyesa
banksel TRISE i Selektuj baku u kojoj e TRISE
2lcf TRIZE Pore B 4w sslasni
banksel FORTE # Seleltu) baku u kojo} Je PORTE
moviw Oxff W=Fr
movwi PORIE i Postavi sva Jedinice na port B
Locp gete Loop : Zkocl na labaly Loop

Bncl

SIMULATOR

Asimulator is a part of MPLAB environment which provides better insight into the operation of the microcontroller. Generally speaking, a simulation is an attempt to model a real-life or
hypothetical situation so that it can be studied to see how the system works. By means of the simulator, it is also possible to monitor current values of variables, registers and port pins states
as well. To be honest, a simulator is not of the same importance for all programs. If a program is simpler (as in our example), the simulation is not of greatimportance because setting port B
pins to logic one (1) is not complicated at all. However, in more complex programs containing timers, different conditions and requests (especially mathematical operations), the simulator
may be of great use. As the name itself indicates, a simulation means to simulate the operation of microcontroller. Like the microcontroller, a simulator executes instructions one after another
(line by line) and constantly updates the state of all registers. In this way, the user simply monitors program execution. At the end of program writing, the user should first test it in the
simulator prior to executing itin a real environment. Unfortunately, this is one of many good things being overlooked by the programmer because of its character as such and the lack of
high-quality simulators as well.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 112/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

Select Tool

L2 v None
Clear Memory

1 MPLAB ICD 2

4 MPLAB ICE 2000
o REAL ICE

6 PICKit 2

Simulator is activated by clicking on DEBUGGER > SELECT TOOL > MPLAB SIM, as shown in figure. As a result, several icons related to the simulator only appear. Their meanings are as

follows:

b
0o

A L

Starts program execution at full speed. In this example, the simulator executes the program

at full (normal) speed until it is halted by clicking the icon below.

Pauses program execution. Program can continue executing step by step or at full speed

again.

Starts program execution at optional speed. The speed of execution is set in dialog

Debugger/Settings/Animation/Realtime Updates.

Starts step-by-step program execution. Instructions are executed one after another.
Furthermore, clicking on this icon enables you to step into subroutines and macros.

This icon has the same function as the previous one except it has the ability to step into

subroutines.

Resets microcontroller. By clicking this icon, the program counter is positioned at the

beginning of the program and simulation can start.

Similar to real environment, the first thing that should be done is to reset the microcontroller using the option DEBUGGER > RESET or by clicking reset icon. As the consequence of this, a

green line is positioned at the beginning of the program and program counter PCL is cleared to zero. Refer to the window Special Function Registers shown below.

' v Project
v Cutput

Toolbars »

Disassembly Listing
EEPROM
File Registers
Hardware Stack
1
Locals
Program Memary
Special Function Registers
Watch

1 Memary Usage Gauge

Simulator Trace
Simulator Logic Analyzer

M Special Function Registers

ooo INDF = —m————
Do1 THRO ODooooDD
ooz PCL Q0000050
ooz STATUS Q000Don0n
oo4 F3R O000D0oo0
oos PORTA 0oDDDoDD
Dos PORTE 0D0DDDoD
oo7 PORTC ooDoDoDD
oog FORTD 00oonon0n
ong FPORTE QOoOooono
o0& PCLATH [[ulxTelelelite}
ooB INTCON 0oooDooD
Doc FIRL 00DoDDoD
Dop FIRZ 00DoDooD
DOE THRL 00000000 0ODDORO0
ooE THR1L [=]al=lelee s o)
ooF THR1H Qooocooen
oio TLCONW QOooDDoD
D11 THEZ oooooooD
D1z T2CoN 0oooDooD
D13 SSPEUF oooooooo
014 SEPCON 0O000000
015 CCPR1 0o000000 0ODODOOD
ois CCPRIL {aululelul el
oi& CCPRLIH QODDDEoD
017 CCP1CON OoDoDooD
ois RCSTA {alulululxlelel:)
018 TEREG [ulwelulelis]
01k RCREG 00000000 -

Apart from SFRs, itis good to have an insight in File Registers. A window containing them appears by clicking the VIEW->FILE REGISTERS option.

If the program contains variables, itis good to monitor their values as well. Each variable is assigned a window (Watch Windows) by clicking VIEW->WATCH option.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

113/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

e G Ses Bt Duges g ok (armes gied pe
O Sl AAS Y R @ WBO S | Oslae WS e F TR

Bl T e —

“EEiE COWTSl, Dve.oFT | rowm o i reiooer i ponoer @ Emar i o] L TR
cotrd CONEIGT, _WAT_OFf & _mendiv o Tmo
w e
areers Dakliraciie promsniivis =ress om amn
oo
..... ol 4 GRERNAYL YL e ois. T
a Paklaraot 1a pE JLwls e 2
T moee
Chla=h o O30 Pesebak RAN-a o e
Wresa oo Romm
o o eo
vt o orow
. o FIEL
ane o wm
FET Y
------ Struktsrs progranmks mamsrids Seees mr e
o mEm
- [T T vestoe gu A
i il | pumen vestos it
ake Hain an warwar
3 0
oac il { Imtatapt vactos wr oo
o el

aees Wain tnams Entarspt rusiss

main

gErzg 8l

R R R EEEE T

haninel TRIER | mowTat programs acjup
ba¥ TRIA O o
bt nzoa, 2 0 m o m n
cLif TTAE ool o el
Do Cesmsed w@QE a0 03 03 03 3 M 00 D m
=iet =nt: 002 De e B o o om
R o
Laop bastom BURTA, 0,3, baveany w03 08 W w03 m
bottam BORTA, 1.3 Fmanii TEa LS 08 77 00 T o m
= pae : e TF 03 s MF 00 M oo m
e Exold 03 02 02 00 OF 00 o0 o
s na 03 momor o ™ m
5303 03 0300 03 OO o m
Poveeay imsr e 3 02 0% oz ot mm o o
et e 5803 02 0003 oo o0 o0 e
= o9 0z 0% b e n
wiwat nTn 00 2 1c a0 03 o
gase Eoop o8 03 o ™o,
™0 e & D
Mmanii dact cut, ~ = 0 Sauns i
wavt ant, W 1] b
Bowat PORTR L2l e iy
Foze Lonp [
St e
it P
ET
-
v | WS T] v
S — i — i

If the program contains variables, itis good to monitor their values as well. Each variable is assigned a window (Watch Windows) by clicking VIEW->WATCH option.

After all variables and registers of interest become available on the simulator working area, the process of simulation can start. The next instruction may be either Step into or Step over
depending on whether you want to step into subroutine or not. The same instructions may be set by using keyboard- push-buttons <F7> or <F8> (generally, all important instructions have

the corresponding pushbuttons on the keyboard).

Book: PIC Microcontrollers
TOC Introduction Ch.1 Ch.2 Ch.3 Ch4. Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 App. A App. B App.C

Appendix B: Examples

«— previous chapter | table of contents | next chapter —

The purpose of this chapter is to provide basic information about microcontrollers that one needs to know in order to be able to use them successfully in practice. This chapter, therefore,
does not contain any super interesting program or device schematic with amazing solutions. Instead, the following examples are more proof that program writing is neither a privilege nor a
talent issue but the ability of simply putting puzzle pieces together using directives. Rest assured that design and development of devices mainly consists of the following method "test-
correct-repeat”. Of course, the more you are in it the more complicated it becomes since the puzzle pieces are put together by both children and first-class architects...

BASIC CONNECTING
As seen in the figure below, in order to enable the microcontroller to operate properly it is necessary to provide:

« Power Supply;
* Reset Signal; and

¢ Clock Signal.
6-12v
et
>~ = + sv
§ | LM7805
o A i
100uF 10uF = 100nF
|:] 10K
GND —
r—{mcLr RET
[ran REG
[rat RES
RESET [raz RE4
[ras RE1
[ras RE2
fras O ret
—— Oreo () mE0
- E RE1 E‘; Vdd
REZ Vis
[oda g ROT
[vss oo Roe
os¢i =~ RDS
osc2 RO
[rea RCT
amHz 4.0 [ret RCE
[re2 RCE
20-30pF 20-30pF E pr o
‘rI‘r [ro1 RDZ
GND =

GND

Clearly, itis about simple circuits, but it does not have to always be like that. If the target device is used for controlling expensive machines or maintaining vital functions, everything gets

more and more complicated! However, this solution is sufficient for the time being...

POWER SUPPLY

Even though the PIC16F887 can operate at different supply voltages, why to test "Murphy's low"?! A 5DC power supply is shown above. The circuit, uses a cheap integrated three-terminal
positive regulator, LM7805, provides high-quality voltage stability and quite enough current to enable microcontroller and peripheral electronics to operate normally (enough in this case

means 1Amp).

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

114/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

RESET SIGNAL

In order that the microcontroller can operate properly, a logic one (VCC) must be applied on the reset pin it explains the connection pin-resistor 10K-VCC. The push-button connecting the
reset pin MCLR to GND is not necessary. However, it is almost always provided because it enables the microcontroller safe return to normal operating conditions if something goes wrong.
By pushing this button, 0V is brought to the pin, the microcontroller is reset and program execution starts from the beginning. The 10K resistor is there to allow 0V to be applied to the MCLR
pin, via the push-button, without shorting the 5VDC rail to ground.

CLOCK SIGNAL

Even though the microcontroller has a built in oscillator, it cannot operate without external components which stabilize its operation and determine its frequency (operating speed of the
microcontroller). Depending on which elements are in use as well as their frequencies, the oscillator can be run in four different modes:

e LP - Low Power Crystal;

¢ XT - Crystal / Resonator;

« HS - High speed Crystal / Resonator; and
+ RC - Resistor / Capacitor.

Why are these modes so important? Owing to the fact

e mgg thatitis almostimpossible to make a stable oscillator
TOSCI0 - AAK & |10 RAT 5 10 e . .

NIOSE - FAf e FLKTAT AT miD which operates over a wide frequency range, the

[FICK - Fusd e LA, AA7 as G . .)

RC” Rt CLEOUT, b s P microcontroller must know which crystal is connected

' e — | in order thatit can adjust the operation of its internal
I - —————
mnml_ o [t _— oe.a ‘calaljus e operation of its interna
ity & o & B)] electronics to it. This is why all programs used for
Power Up Timer £l . . . N .
5 - I Ty h—act. [chip loading contains an option for oscillator mode
Master Clear §rabled - m_ Reer i
Dt EE Vrateet Qs = e ——— selection. See above figure.
B Dt Dstet | S0 Lt - " DOy - OOFF Prd e | i |
; = D00 07FFh Fistested
Tnk-Exkt Semfbchover Dissbbed T Pk HEX
e - = | =0
v Vol Progras Oustked -
Ie-Cirpist Debugger 100 Disatled - o Colbrseon skttt
Col Woed 11
Browan-gad Toeset Sel oeiin 21V -
s — [(oo |
T H L Oex E N
FF IFFF IFFF (FFF |
Frogran Moo Sze: BE Devoe s dle Tree Progitis
EEPROM Sov 258 Byses: Addesz Fiasarion -, — |
Pl DO ieh] TOUCHPANEL | TOUCHPAKEY M2
Dwrre: PICI0FBET ey shon | Mone:

Quartz resonator

When a quartz crystal is used for frequency stabilization, the built in oscillator operates at a very precise frequency which is isolated from changes in temperature and voltage power supply
as well. This frequency is normally labelled on the microcontroller package.

Apart from the crystal, capacitors C1 and C2 must be also connected as per the schematic below. Their capacitance is not of great importance, therefore, the values provided in the table
should be considered as a recommendation rather than a strict rule.

Mode Frequency C1,C2

c1
Q !
lT! 32KHz | 33pF
l — Shed % LP 200 KHz | 15pF
kN B — i, 200 KHz | 47-68 pF
H—[oscz ¥ XT 1MHz | 15pF
cz © 4 MHz 15 pF
B

4MHz | 15pF
HS 8MHz | 1533 pF
20 MHz | 15-33 pF

Ceramic resonator

Ceramic resonator is cheaper, but very similar to quartz by its function and the way of operating. This is why the schematics illustrating their connection to the microcontroller are identical.
However, the capacitor value is a bit different in this case due to different electric features. Refer to the table.

c1 QR

Mode Frequency (C1,C2
455 KHz | 68-100 pF
XT 2 MHz 15-68 pF
4 MHz 15-68 pF
8 MHz 10-68 pF
16 MHz 10-22 pF

[En
g
PlCIEFeeT

HS

These oscillators are used when itis not necessary to have extremely precise frequency.

RC oscillator

If the operating frequency is not of importance then there is no need for additional expensive components for stabilization. Instead, a simple RC network, as shown in the figure below, will
be enough. Since only the input of the local oscillator input is in use here, the clock signal with frequency Fosc/4 will appear on the OSC2 pin. Furthermore, that frequency becomes
operating frequency of the microcontroller, i.e. the speed of instruction execution.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 115/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

VCC

3K <R1< 100K
C > 20pF

PICTBFSSY

External oscillator

Ifitis required to synchronize the operation of several microcontrollers or if for some reason itis not possible to use any of the previous schematics, a clock signal may be generated by an
external oscillator. Refer to the figure below.

ADDITIONAL COMPONENTS

Regardless of the fact that the microcontroller is a product of modern technology, it is of no use without being connected to additional components. Simply, the appearance of voltage on the
microcontroller pins mean nothing if not used for performing certain operations (turn something on/off, shift, display etc.).

This section intentionally covers only the most commonly used additional components in practice such as resistors, transistors, LED diodes, LED displays, LCD displays and RS232
communication circuits.

SWITCHES AND PUSH-BUTTONS

There is nothing simpler than switches and push-buttons! This is definitely the simplest way of detecting the appearance of a voltage on the microcontroller input pin and there is no need for
additional explanation of how these components operate. Nevertheless, it is not so simple in practice... Then, whatis it all about?

0.01-100mS

Switch off moment ‘

5V

gy

Itis about contact bounce- a common problem with mechanical switches. When the contacts strike together, their momentum and elasticity act together to cause bounce. The resultis a
rapidly pulsed electrical currentinstead of a clean transition from zero to full current. Generally, it mostly occurs due to vibrations, slight rough spots and dirt between contacts. This effect is
usually unnoticeable when using these components in everyday life because the bounce happens too quickly to affect most equipment, but causes problems in some analogue and logic
circuits that respond fast enough to misinterpret the on-off pulses as a data stream. Anyway, the whole process does not lastlong (a few micro- or milliseconds), butlong enough to be
registered by the microcontroller. When using only a push-button as a pulse counter, errors occurs in almost 100% of cases!

This problem may be easily solved by connecting a simple RC circuit to surpress quick voltage changes. Since the bounce period is not defined, the values of components are not precisely
determined. In most cases, itis recommended to use the values as shown in figure below.

+5V
10K

-
'L 100nF

I

If complete stability is needed then radical measures should be taken! The output of the circuit, shown in figure below (RS flip-flop), will change its logic state only after detecting the first
pulse triggered by contact bounce. This solution is more expensive (SPDT switch), but the problem is definitely solved!

5
100K s
i.
=

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 116/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

In addition to these hardware solutions, there is also a simple software solution. When a program tests the state of an input pin and detects a change, the check should be done one more
time after a certain delay. If the program confirms the change, it means that a switch/push-button has changed its position. The advantages of such solution are obvious: it is free of charge,
effects of noises are eliminated and it can be applied to the poorer quality contacts as well.

RELAY

Arelay is an electrical switch that opens and closes under the control of another electrical circuit. It is therefore connected to output
pins of the microcontroller and used to turn on/off high-power devices such as motors, transformers, heaters, bulbs, etc. These devices
are almost always placed away from the boards sensitive components. There are various types of relays, but all of them operate in the
same way. When a current flows through the coil, the relay is operated by an electromagnet to open or close one or many sets of
contacts. Similar to optocouplers, there is no galvanic connection (electrical contact) between input and output circuits. Relays usually
demand both higher voltage and current to start operation but there are also miniature ones that can be activated by a low current
directly obtained from a microcontroller pin.

This figure shows the most commonly used solution.

In order to prevent the appearance of high voltage self-induction caused by a sudden stop of
current flow through the coil, an inverted polarized diode is connected in parallel to the coil. The
purpose of this diode is to "cut off" the voltage peak. T

PORT

Microcontroller

S

T1

- el

GND
LED DIODES

You probably know all you need to know about LED diodes, but we should also think of the younger generations...How to destroy a LED?! Well...Very simple.

3
a8

10 os L
{0 a38kiny ot {o.aza)’

Quick burning
Like any other diode, LEDs have two ends an anode and a cathode. Connect it properly to a power supply voltage. The diode will happily emitlight. Turn it upside down and apply the same

power supply voltage (even for a moment). It will not emit light- NEVER AGAIN!

Slow burning
There is a nominal, i.e. maximum current determined for every LED which should not be exceeded. If it happens, the diode will emit more intensive light, but not for a long time!

Something to remember
Similar to the previous example, all you need to do is to discard a current limiting resistor shown below. Depending on power supply voltage, the effect might be spectacular!

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 117/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

<+— ANODE (+) a ud

16 28 I (20l 2 mA)

a2 UGV
o \ Flat on
<— CATHODE (-) body flange

LED DISPLAY

Basically, LED display is nothing more than several LEDs moulded in the same plastic case. There are many types of displays composed of several dozens of builtin diodes which can
display different symbols. The most commonly used is so called 7-segment display. It is composed of 8 LEDs- 7 segments are arranged as a rectangle for symbol displaying and there is an
additional segment for decimal point displaying. In order to simplify connection, anodes or cathodes of all diodes are connected to the common pin so that there are common anode displays
and common cathode displays, respectively. Segments are marked with the letters from a to g, plus dp, as shown in figure below. On connecting, each diode is treated separately, which
means that each must have its own current limiting resistor.

edp

Here are a few important things that one should pay attention to when buying LED displays:

« Depending on whether anodes or cathodes are connected to the common pin, there are common anode displays and common cathode displays. The figure above
shows a common anode display. Looking at physical features, there is no difference between these displays at all so it is recommended to check carefully prior
installation which of them is in use;

« For each microcontroller pin, there is a maximum current limitation it can receive or give. Because of this, if several displays are connected to the microcontroller
it is rec ommended to use so called Low current LEDs using only 2mA for operation; and

« Display segments are usually marked with the letters from a to g, but there is no fast rule indicating to which micro controller pins they should be connected. For
this reason it is very important to check connecting prior to commencing program writing or designing a device.

Displays connected to the microcontroller usually occupy a large number of valuable 1/O pins, which can be a big problem especially when itis needed to display multi-digital numbers. The

problem is more than obvious if, for example, it is needed to display two 6-digit numbers (a simple calculation shows that 96 output pins are needed in this case)! This problem has a
solution called MULTIPLEXING.

Here is how an optical illusion based on the same operating principle as a film camera is made. Only one digit at a time is active, but they change their state so quickly that one gets
impression that all digits of a number are active simultaneously.

Li=1E - =R B = -]

=

PORT 2
=%

8 x 330R | [|

4 x Low current common
B cathode displays
@ @ @) @

T4

—
— @w T2

I &

PORT 1

T1

Microcontroller

4 x 10K

—

Here is an explanation on the figure above. First a byte representing units is applied on a microcontroller port and a transistor T1 is activated simultaneously. After a while, the transistor T1 is
turned off, a byte representing tens is applied on a port and transistor T2 is activated. This process is being cyclically repeated at high speed for all digits and corresponding transistors.

A disappointing fact which indicates that the microcontroller is just a kind of miniature computer designed to understand only the language of zeros and ones is fully expressed when
displaying any digit. Namely, the microcontroller does not know what units, tens or hundreds are, nor what ten digits we are used to look like. Therefore, each number to be displayed must
go through the following procedure:

First of all, in a particular subroutine a multi-digital number must be splitinto units, tens etc. Then, these must be stored in special bytes each. Digits get recognizable format by performing
"masking". In other words, a binary format of each digit is replaced by a different combination of bits using a simple subroutine. For example, the digit 8 (0000 1000) is replaced by binary
number 0111 1111 in order to activate all LEDs displaying digit 8. The only diode remaining inactive in this case is reserved for the decimal point.

If a microcontroller portis connected to the display in a way that bit 0 activates segment "a", bit 1 activates segment "b", bit 2 segment "c" etc., then the table below shows the mask for each
digit.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 118/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
C [oJofofo]0f1[o[1] Number 5 binary [E
f
[ol1[1]o]44]o[1] Number 5 mask

dpg f edc b a

L]
a0
dp
8 x 330R
& — a
- — b
g R— ¢
= e d
E — e
S
o Ca—
= — dp Low current common
R cathode display
DIGITS TO DISPLAY DISPLAY SEGMENTS
dp a b [d e f g
0 0 1 1 1 1 1 1 0
1 0 0 1 1 0 0 0 0
2 0 1 1 0 1 1 0 1
3 0 1 1 1 1 0 0 1
4 0 0 1 1 0 0 1 1
5 0 1 0 1 1 0 1 1
6 0 1 0 1 1 1 1 1
7 0 1 1 1 0 0 0 0
8 0 1 1 1 1 1 1 1
9 0 1 1 1 1 0 1 1

In addition to digits from 0 to 9, there are some letters- A, C,E, J,F, U,H, L, b, c,d, o, r, t- that can be also displayed by means of the appropriate masking.

In the event that the common anode displays are used, all ones contained in the previous table should be replaced by zeros and vice versa. Additionally, NPN transistors should be used as
drivers as well.

OPTOCOUPLER

An optocoupler is a device commonly used to galvanically separate microcontroller electronics from any potentially dangerous current or voltage in its surroundings. Optocouplers usually
have one, two or four light sources (LED diodes) on their input while on their output, opposite to diodes, there is the same number of elements sensitive to light (phototransistors, photo-
thyristors or photo-triacs). The point is that an optocoupler uses a short optical transmission path to transfer a signal between elements of circuit, while keeping them electrically isolated.
This isolation makes sense only if diodes and photo-sensitive elements are separately powered. In this way, the microcontroller and expensive additional electronics are completely
protected from high voltage and noises which are the most common cause of destroying, damaging or unstable operation of electronic devices in practice. The most frequently used
optocouplers are those with phototransistors on their outputs. Additionally, optocouplers with internal base-to-pin 6 connection (there are also optocouplers without it), the base may be left
unconnected.

+5V
10K

[[(NN [
Microcontroller

Galvanically isolated

The R/C network represented by the broken line in the figure above denotes optional connection which lessens the effects of noises by eliminating very short pulses.

LCD DISPLAY

This component is specifically manufactured to be used with microcontrollers, which means that it cannot be activated by standard IC circuits. Itis used for displaying different messages on
a miniature liquid crystal display. The model described here is for its low price and great capabilities most frequently used in practice. Itis based on the HD44780 microcontroller (Hitachi)
and can display messages in two lines with 16 characters each. It displays all the letters of alphabet, Greek letters, punctuation marks, mathematical symbols etc. In addition, itis possible to
display symbols made up by the user. Other useful features include automatic message shift (left and right), cursor appearance, LED backlight etc.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 119/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
@ (elclelclelclelclolclelolololo]1c BE

CO

a

Along one side of a small printed board there are pins used for connecting to the microcontroller. There are in total of 14 pins marked with numbers (16 if the backlightis built in). Their
function is described in the table bellow:

FUNCTION PIN NUMBER NAME LOGIC STATE DESCRIPTION
Ground 1 Vss - ov
Power supply 2 vdd - +5V

Contrast 3 Vee - 0 - vdd

4 RS 0 DO - D7 are interpreted as commands
1 DO - D7 are interpreted as data
5 R/W 0 Write data (from controller to LCD)
Control of operating 1 Read data (from LCD to controller)
0 Access to LCD disabled
6 E 1 Normal operating
From 1 to 0 Data/commands are transferred to LCD
7 DO 0/1 Bit 0 LSB
8 D1 0/1 Bit 1
9 D2 0/1 Bit 2
10 D3 0/1 Bit 3
Data / commands

11 D4 0/1 Bit 4
12 D5 0/1 Bit 5
13 D6 0/1 Bit 6
14 D7 0/1 Bit 7 MSB

LCD screen

The LCD screen consists of two lines with 16 characters each. Every character consists of 5x8 or 5x11 dot matrix. This book covers the 5x8 character display, which is indeed the most
commonly used.

Display contrast depends on the power supply voltage and whether messages are displayed in one or two lines. For this reason, varying voltage 0-Vdd is applied on the pin marked as Vee.
Trimmer potentiometer is usually used for that purpose. Some LCD displays have builtin backlight (blue or green diodes). When used during operation, a current limiting resistor should be
serially connected to one of the pins for backlight (similar to LED diodes).

LED backlights

If there are no characters displayed or if all of them are dimmed when the display is switched on, the first thing that should be done is to check the potentiometer for contrast adjustment. Is it
properly adjusted? The same applies if the mode of operation has been changed (writing in one or two lines).

LCD Memory
LCD display contains three memory blocks:

+« DDRAM - Display Data RAM;
¢« CGRAM - Character Generator RAM; and

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 120/155

16/2/2016
+ CGROM - Character Generator ROM.

DDRAM Memory

Introduction: World of microcontrollers - Book: PIC Microcontrollers

DDRAM memory is used for storing characters that should be displayed. The size of this memory is sufficient for storing 80 characters. Some memory locations are directly connected to the
characters on display.

It works quite simply: itis enough to configure the display to increment addresses automatically (shift right) and set the starting address for the message that should be displayed (for
example 00 hex).

After that, all characters sent through lines DO-D7 will be displayed as a message format we are used to- from left to right. In this very case, displaying starts from the first field of the firstline
because the address is 00 hex. If more than 16 characters are sent then all of them will be memorized, but only the first sixteen characters will be visible. In order to display the rest of them, a
shift command should be used. Virtually, everything looks as if the LCD display is a window which shifts left-right over memory locations containing different characters. In reality, this is how
the effect of message shifting on the screen has been created.

DDRAM Memory

? First Line Addrgsses: 00 - 27 hex.
T E PR e b
0 |41 |42|43|44|45!45I47I43I49[4A|441c|4u| 4E|4F nls-u'ls 1Iszlsfs|54|55’5a.|5?I55]59|5A|55FC|50|55I5F |a0 lm |az|aa]a4|&5|as]a?|

LCD Display Second Line Addresses: 40 - 67 hex.

If the cursor is on, it appears at the location which is currently addressed. In other words, when a character appears at the cursor position, it will automatically move to the next addressed
location.

This is a sort of RAM memory so data can be written to and read from it, but its contents is irretrievably lost upon the power goes off.

CGROM Memory

CGROM memory contains the default character map with all characters that can be displayed on the screen. Each character is assigned to one memory location:

HlallF ™ F i A
oo [0 [TT1AIGaA] | (o [P[FL[S]G
wonolo [" ZIBRBIP [[T4 g6
oo | 0| |RIS[CISIC[S] | [4[[T[E|E e
o o]0 | [FHDITICAR] [[[TIF P
émmm = EUeul [AF =0
B o[o [[&IBIFIUFIV] | [FAZ[3T|p[E
B o[o[|"[P[GWSw] | [ZIF[R[3|n
8 o[0| [€ [SH[A[A]%] £ [AF
L oot | @] [A I[Y]1]4] el 'TL ik |y
2 oo H[E 2] | [Tl jF
woor|w| [+[3 KL [K[L] | [[¥EO* R
w0 |2 [R]LFIL[T] | [#[Z]2]2]¢ M
w0 [=[S[MAmEF] | [a[Z[~E]+
waro| 0] [2HI™R[] | [F[ELE[" A
feerio| [T _Jo[€] | [wE O]

The addresses of CGROM memory locations match the characters of ASCII. If the program being currently executed encounters a command "send character P to port" then the binary value
0101 0000 appears on the port. This value is the ASCII equivalent to the character P. Itis then written to LCD, which results in displaying the symbol from the 0101 0000 location of CGROM.

In other words, the character "P" is displayed. This applies to all letters of the alphabet (capitals and small), but not to the numbers!

As seen on the previous map, addresses of all digits are pushed forward by 48 relative to their values (digit 0 address is 48, digit 1 address is 49, digit 2 address is 50 etc.). Accordingly, in
order to display digits correctly itis necessary to add a decimal number 48 to each of them prior to sending them to LCD.

Whatis ASCII? From their inception till today, computers can recognize only numbers, but not letters. It means that all data a computer swaps with a peripheral device has a binary format

even though the same is recognized by the man as letters (The keyboard is an excellent example)! It's as simple as that- every character matches the unique combination of zeroes and

ones. ASCll is character encoding based on the English alphabet. ASCIl code specifies a correspondence between standard character symbols and their numerical equivalents.

LCD Basic Commands

All data transferred to LCD through the outputs DO-D7 will be interpreted as a command or a data, which depends on the pin RS logic state:

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

121/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

RS =1 -Bits DO - D7 are addresses of the characters to be displayed. LCD processor addresses one character from the character map and displays it. The DDRAM address specifies the
location on which the character is to be displayed. This address is defined prior character transfer or the address of the previously transferred character is automatically incremented.

RS =0 - Bits DO - D7 are commands which determine display mode.

The commands recognized by the LCD are listed in table below:

COMMAND RS RW D7 D6 D5 D4 D3 D2 D1 DO EXECUTION TIME
Clear display 0 0 0 0 0 0 0 0 0 1 1.64mS
Cursor home 0 0 0 0 0 0 0 0 1 X 1.64mS
Entry mode set 0 0 0 0 0 0 0 1 1/D S 40uS
Display on/off control 0 0 0 0 0 0 1 D U B 40uS
Cursor/Display Shift 0 0 0 0 0 1 D/C R/L X X 40uS
Function set 0 0 0 0 1 DL N F X X 40us
Set CGRAM address 0 0 0 1 CGRAM address 40us
Set DDRAM address 0 0 1 DDRAM address 40uS
Read "BUSY" flag (BF) 0 1 BF DDRAM address -
Write to CGRAM or DDRAM 1 0 D7 D6 D5 D4 D3 D2 D1 DO 40us
Read from CGRAM or DDRAM 1 1 D7 D6 D5 D4 D3 D2 D1 DO 40us
I/D 1 = Increment (by 1) R/L 1 = Shift right
0 = Decrement (by 1) 0 = shift left
S 1 = Display shift on DL 1 = 8-bit interface
0 = Display shift off 0 = 4-bit interface
D 1 = Display on N 1 = Display in two lines
0 = Display off 0 = Display in one line
U 1 = Cursor on F 1 = Character format 5x10 dots
0 = Cursor off 0 = Character format 5x7 dots
B 1 = Cursor blink on D/C 1 = Display shift
0 = Cursor blink off 0 = Cursor shift

What is Busy flag ?

Compared to the microcontroller, the LCD is an extremely slow component. Because of this, it was necessary to provide a signal which would, upon command execution, indicate that the
display is ready for the next piece of data. That signal, called the busy flag, can be read from the line D7. When the voltage on this line is 0V (BF=0), the display is ready to receive new data.

LCD Connecting

Depending on how many lines are used for connecting the LCD to the microcontroller, there are 8-bit and 4-bit LCD modes. The appropriate mode is selected at the beginning of the
operation in this process called "initialization". 8-bit LCD mode uses outputs D0-D7 to transfer data as explained on the previous page.

The main purpose of 4-bit LED mode is to save valuable I/O pins of the microcontroller. Only 4 higher bits (D4-D7) are used for communication, while others may be unconnected. Each
piece of data is sent to the LCD in two steps- four higher bits are sent first (normally through the lines D4-D7) and four lower bits are sent afterwards. Initialization enables the LCD to link and
interpret received bits correctly.

Microcontroller

Can be connected

to Ground —]
D +5V

In 4-bit mode is
T left unconnected

Data is rarely read from the LCD (it is mainly transferred from the microcontroller to LCD) so it is often possible to save an extra I/O pin by simple connecting R/W pin to the Ground. Such
saving has its price. Messages will be normally displayed, but it will not be possible to read the busy flag since itis not possible to read the display as well. Fortunately, there is a simple
solution. After sending a character or a command it is important to give the LCD enough time to do its job. Owing to the fact that the execution of the slowest command lasts for approximately
1.64mS, it will be sufficient to wait approximately 2msS for LCD.

LCD Initialization

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 122/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

The LCD is automatically cleared when powered up. It lasts for approximately 15mS. After this, display is ready for operation. The mode of operation is set by default. It means that:

1. Display is cleared.
2. Mode
DL = 1 Communication through 8-bit interface
N = 0 Messages are displayed in one line
F = 0 Character font 5 x 8 dots
3. Display/Cursor on/off
D = 0 Display off
U = 0 Cursor off
B = 0 Cursor blink off
4. Character entry

ID = 1 Displayed addresses are automatically incremented by 1
S = 0 Display shift off

Automatic reset is mostly done without any problems. Mostly, but not always! If for any reason power supply voltage does not reach full value within 10mS, display will start performing

completely unpredictably. If voltage supply unitis not able to meet that condition or if it is needed to provide completely safe operation, the process of initialization is applied. Initialization,
among other things, causes a new reset enabling display to operate normally.

Refer to the figure below for the procedure on 8-bitinitialization:

| Wait for more than 15ms |
|
RS R/W D7 D6 D& D4 D3 D2 D1 DO | Bit BF cannot be checked before this Instruction
0 0 0 0 1 1 x x x x | Displayis setto 8-bit mode
|
Wait for more than 4.1mS
I

RS R/W D7 D6 DS D4 D3 D2 D1 DO | Bit BF cannot be checked before this instruction
0 0 0 01 1 x x x x | Displayissetto8-bitmode

Wait for more than 100uS

RS R/W D7 D6 D5 D4 D3 D2 D1 DO | Bit BF cannot be checked before this instruction

Bit BF can be checked after
the following instructions

RS R/W D7 D6 D5 D4 D3 D2 D1 DO | The number of display lines and character font

have to be defined and these values cannot
0 0 0 01 1 N F x X | pechanged after this point.

0 0 0 00 01 0 0 0| Displayoff

0 0 0 00 00 O 0 1| Displayoff
0 0 0 00 0O 1 UDS | Displayoff

v

Initialization ends

Itis not a mistake! In this algorithm, the same value is transferred three times in a row.

In case of 4-bit initialization, the procedure is as follows:

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 123/155

16/2/2016

EXAMPLE 1

Introduction: World of microcontrollers - Book: PIC Microcontrollers

Power on
|

Wait more than15mS

RS R/W D7 D6 D5 D4
0 0 0 01 1

Display is set to 8-bit mode

RS R/W D7 D6 D5 D4
0 0 0 0 1 1

]

Wait more than 100uS

RS R/W D7 D6 D5 D4
0 0 0 0 1 1

RS R'W D7 D6 D5 D4
0 0 0 01 0O

0 0
0 0 N F x x

o
(=]
- o
oo
[=]
(=]

o

(=]

[= I =]
-QQ
o

- O

0 0 0
0O 0 0 00 O
0 0 0 11D S
v
Initialization ends

Writing header and configuring /O pins

Bit BF cannot be checked before this instruction
Display is set to 8-bit mode

Bit BF cannot be checked before this instruction
Display is set to 8-bit mode

Bit BF cannot be checked before this instruction
Display is set to 8-bit mode

Bit BF can be checked after
the following instructions

Start operation in 4-bit mode
After this point 4 higher bits are written first,
4 lower afterwards

The number of display lines and character font
have to be defined and these values cannot
be changed after this point

Display off

Display clear

Set entry mode

The only purpose of this program is to turn on a few LED diodes on port B. Itis nothing special. Anyway, use this example to study what a real program looks like. The figure below shows a
connection scheme, while the program is on the next page.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

124/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

vceC
10K
RESET
e -
I”—o MCLR
[rao
[} rA1
[| rAZ
[| rA3
[Rad —
[| ras o —
[res O 7
[| re1 — il
vce [l re2 o i
O——| pdd g i
[E— i
L —fJosc1t il
GO = [| oscz n
[| rco H
L s U S i
2x20-30pF T E ::: %
f [l rD1 i
SND = — GND

When switching on, every other LED diode on the port B emits light. That is enough to indicate that the microcontroller is properly connected and operates normally.

This example gives the description of a correctly written header and a few initial directives. They represent a part of the program used in all programs described in this book. To skip
repetitiveness, it will not be written in the following examples, but is considered to be at the beginning of every program (marked as a "Header").

P Ve S S U S RS R S A S AP S R R Y
; Hamea: Test.asm
i Datae: November 18, 2007
= Version: 1,00
» Programmer: James Jones
r-\“l‘kll!ﬂ1!!KkF’l'!’kkW‘i‘i!‘ﬂKH!K"*WWW*“‘PPP\i*‘ﬁ!QAA!’\i’l’i’ki’ki’ﬂﬂ""fﬂ’\\’*ww*)ﬂ!!
& Description: Testing microcontreller
r-‘i‘lilﬂQ!QKICIcl'l’l’k"\l\i‘.“.!!!("'ﬁ"l’*"“‘lhD"l“'l’\l.l!AR!!W’l’kl’ki’l’dﬂ-iiki’t*"i*)ﬂ!i
5 list p=16f387 : Type of microcontreller
= finclude <plEf887.1ina> : Defines all SFRs
% ; and bits within the PICI&FEET
errorlavel -302 ; Disables message "Register
i in operand not in bank (. Ensure that
¢ bank bits are correct."
'-'Wl‘**i*i!QTWWW***W*W*‘!F"F’""*‘l"’***"‘"\PP"'\U\\’\"*WWQ"?"‘f"#W****!’"W***WWW‘.*WP
__ CONFIG _CONFIGl, HS OSC & WDT OFF & PWRTE ON & MCLRE ON
& CP OFF & CPD OFF & PBOR ON & _IESO ON & FCMEN ON & LVE OFF
& DEBUG OFF
\ Ceanfig word should
_ CONFIG _CONFIGZ, BOR4OV & WRT OFF be displayed in one
line
r-"lf!\’klﬂﬁ**(kﬁ#ﬂ’\"**‘i*“!#****\\’***'ﬂ?’?***\l\i\l\lQﬂ..PPﬁkkk***ﬂﬂt'***w*ww't“’
ORG 0x0000 : Address of the first program
; -instruction
i ET
E g banksel TRISBE ; Selects bank containing TRISE
EE cixt TRISE ¢ A11 port B pins are configured ;
o3 ; as outputs i
E ® banksel EORTE i Selects bank containing PORTE i
n‘E moviw B'01010101° : Moves number 0LO10101 to W i
movwE FORTE ; Moves number 01010101 from W to PORTR i
end : End

The purpose of the header and initial directives is briefly described below.

Header:

The header is placed at the beginning of the program and gives basic information in the form of comments (name of the program, release date etc.). Don't be deluded into thinking that after
a few months you will know what that program is about and why itis saved in your computer.

Initial directives:

list p=16£887

This directive defines processor to execute a program.

#include <pl6£887.inc>

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 125/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

It enables the compiler to access the document p16f887.inc (If you have MPLAB installed, itis placed by default on C:\Program files\Microchip\MPASM Suite). Every SFR register contained
in this document, as well as every bit, has its own name and address. If the program reads for example:

bsf INTCON,

GIE

It means that the GIE bit of the INTCON register should be set. Instruction, as such, makes no sense to the compiler. It has to access the ".inc" documentin order to know that the seventh bit
of the SFR atthe address 000B hex should be set.

:

i Reglster Definitions

:

: ==

W EQU H'apao'

1-." EQu HIgo01 !

iprsTe Bagdiepar Rilen - — 0

INDE EQU woonpg

TMRO EQU H'DAO0L!

E?— e I::DQUU H'.DG%%EB'_ j—-——— BANK 0 REGISTER DEPINITIONS ————

ATHS H o Gmame Bt

e 5 o b : STATUS Bits

PORTA EQU HioHas5" 188 Equ HYa0aT"

EORTE EQU H'QO06’ 1

BPORTC EQU - G T iié fg? E:DEEE:

PORTD EQU H'¢ooge! NOT TO Hignolt;

PORTE BQU B'0008Y | yar pn e

PCLATH EQU HYepoA' |y = A=

INTCON EQU H'00DE' | pe I

FIRL EQU H'oooc! ¢ d: Canfiguration Bits

BIR2 QU H'oooD! H

TMRLL EQU EYERORY | Lo el e

TMRLH EQU BipooE! _CONPIGL EQU BT 2007

T1can EQU H'O0D10" | mpp § CONPIGZ 500 H!'2008"

THMRZ EQU HIOOL1Y
PEIE

TECON EQU H'O012' | gy pom——— Configuration Wordl ----—-—-——--
TMROIE
INTE _DERUE ON EQU H!' I EEE!
RBIE _DERUG OFF EQU H'IEEE"
TOTE _LVE ON EgQu HTIFFE!"
TMROTE _LVE OFF EQU HY2FEE!
INTE _FCMEN ON EQU H'IEFE"!

_EOMEN OFF EQU H'3TFE
_IESO ON Exlali] H13EEE

errorlevel -302

This is a "cosmetic" directive which disables the irritating message "Register in operand notin ..." to appear at the end of every compiling process. Itis not necessary, but useful.

__config

This directive is used to include config word in the program upon compiling. It is not necessary because the same operation is performed by software for loading program into chip. However,
do you have any idea which software will be used by the end user? What options will be set by default? You are the end user?! Do you know which program you will be using for MCU
programming next year? Make life easier for yourself, take this directive as a necessary one and include itin your program.

EXAMPLE 2

Using program loop and internal oscillator LFINTOSC

This is a continuation of the previous example, but deals with a bit more complicated problem... The idea is to make the LED diodes on the port B blink. A simple thing at first glance! Itis
enough to periodically change logic state on the port B. In this case, numbers 01010101 and 10101010 are selected to change in the following way:

1. Set binary combination 01010101 on port B;

2. Remain in loop1;

3. Replace existing bits combination on port B with 10101010;
4. Remain in loop2; and

5. Return to the step 1 and repeat the whole procedure.

Do you know how fast this should be done? It would be possible to observe changes on port B only if, apart from the delays provided in loop1 and loop2, the whole process is slowed down
approximately 250 times more. Because of this, the microcontroller uses internal oscillator LFINTOSC with the frequency of 31kHz instead of the external oscillator with quartz crystal
(8MHz).

You have noticed that the clock signal source has changed "on the fly". If you want to make sure of it, remove quartz crystal prior to switching the microcontroller on. What will happen? The
microcontroller will not start operating because the config word loaded with the program requires the use of the crystal on switching on. If you remove the crystal later during the operation, it
will not affect the microcontroller at all!

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 126/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

¥ oWoWoNke

10K 10K
i - : Lep 7 330R
I”—O L EHCLR re7 [l
RAD RBE
{] raa RBS [—— Lep 37 330R
[l raz
[ras
[ras e —
sTOP Qras O b
5 Qrea O —
[re1 ot 1]
vce [re2 o] 1|
O———| pad EE 1]
L - osc1 =~ 1]
= - oscz 1]
[reo R[]
8MHz $-1] [re1 reé [] Lep ¥ 330R
E RCZ Rres |1
RC3 RC4 [
2x20-30pF Tics ey Lep 7 330R
—E [ro1 rD2 []

Sorce Code

GND —

KKK R ok kK ok ok K ok kK ok ok K ok ok K K ok ok K ok ok K K ok ok K ok kR ok ok K ok K K ok kK ok ok K ok K K ok K ok kK ok ok K ok ok K K ok kK Rk K K ok

; Header

3k kK ok ok ok ok ok K ok ok K ok ok K ok ok K ok ok kK ok ok K ok ok K

kkkkhkkkhkhhkhkkkkhkkhhkhkkhkkkhhkkhkkhkkxxkkhxk*x%

jRFK KKKk kKkkkkkx DEFINING VARIABLES * % k% k ko ok ko ok ok ko ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok

cblock 0x20
counterl

endc

3 kK ok kK ok ok K ok ok K ok ok K ok ok ko ok ok K ok ok K ok ok K

org 0x0000

banksel OSCCON

bcf 0OSCCON, 6
bef OSCCON, 5
bef OSCCON, 4
bsf OSCCON, 0

banksel TRISB
clrf TRISB
banksel PORTB

loop
movlw B'01010101"
movwf PORTB
movlw h'FF'
movwf counterl
loopl
decfsz counterl
goto loopl
movlw B'10101010"
movwf PORTB
movlw h'FF'
movwf counterl
loop2
decfsz counterl
goto loop2
goto loop
end
EXAMPLE 3

Using nested loop

The connection scheme is again the same. To make this a bit more interesting, a different combination of port B bits change each other. And, that's not all of course. As seen from the

; Block of variables starts at address 20h
; Variable "counterl" at address 20h

kkkkhkhkkhkhhkhkkkkhkkhhkkhkkhkkkhkkkhkkhkkxkkkkxk*x%

; Address of the first program instruction

; Selects memory bank containing

; register OSCCON

; Selects internal oscillator LFINTOSC with
; the frequency of 31KHz

; Microcontroller uses internal oscillator

; Selects bank containing register TRISB
; All port B pins are configured as outputs
; Selects bank containing register PORTB

; Binary number 01010101 is written to W
; Number is moved to PORTB
; Number hFF is moved to W
; Number is moved to variable "counterl"

; Variable "counterl" is decremented by 1
; If result is 0, continue. If not,
; remain in loopl

; Binary number 10101010 is moved to W

; Number is moved to PORTB

; Number hFF is moved to W

; Number is moved to variable "counterl"

; Variable "counterl" is decremented by 1
; If result is 0, continue. If not,

; remain in loop2

; Go to label loop
; End of program

— GND

previous two examples, the microcontroller is very fast and often, it needs to be slowed down. The use of the built-in oscillator LF, as in example 2, is the last measure that should be applied.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

127/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

The problem is more often solved by using nested loops in a program. In this example, the variable "counter1" is decremented 255 times by 1 in the shorter loop1. Prior to leaving this loop,
the program will countdown 255 times from 255 to 0. It means that between only two LED diode’s blink on the port, there are 255x255 pulses coming from the quartz oscillator. Precisely
speaking, the number of pulses amounts to approximately 196 000 since it also takes some time to execute jump instructions and decrement instructions. Yes, it’'s true, the microcontroller

mostly waits and does nothing...

Source Code

g RRKK KKk ok k ok ok k ok ok ok ok kok ok [agder Kk ko k ok ok ok ok ok ok ok ok ok ok ok K ok ok ko ok ok K ok ko ok ok ok ok ok K ok ok ok K ok ok K ok ok K K ok Xk

jrRFA KRk xkkkkkkx DEFINING VARIABLES * %k % %k k% ok k% ok k % K ok kK k& K ok k& ok ok & K ok kK ok ok K K ok & K ok % ok

cblock 0x20
counterl
counter?2

endc

i
i

7

Block of variables starts at address 20h

Variable "counterl" at address 20h

Variable "counter2" at address 21h

KK Kk ok ok ok ok ok K ok K ok K ok K ok K ok K ok K ok K ok ok ok ok K ok K ok ok ok K ok K ok K ok K ok K ok K ok X ok K ok ok ok K ok K ok K ok K ok K ok K ok Kk K ok K kK

org 0x0000
banksel TRISB
clrf TRISB
banksel PORTB
loop
movlw B'11110000"
movwf PORTB
movlw h'Fp'
movwf counter?2
loop2
movlw h'FF'
movwf counterl
loopl
decfsz counterl
goto loopl
decfsz counter?2
goto loop2
movlw B'00001111"
movwf PORTB
movlw h'Fp!
movwif counter?2
loop4
movlw h'FF'
movwf counterl
loop3
decfsz counterl
goto loop3
decfsz counter?2
goto loop4
goto loop
end
Example 4

Using timer TMRO and Interrupts

i

Address of the first program instruction

Selects bank containing register TRISB

Clears

TRISB

Selects bank containing register PORTB

Binary
Number
Number
Number

Number
Number

number 11110000 is moved to W
is moved to PORTB

hFF is moved to W

is moved to variable "counter2"

hFF is moved to W
is moved to "counterl"

Decrements "counterl" by 1. If result is

skip next instruction

Decrements "counter2" by 1. If result is

skip next instruction

Binary
Number
Number
Number

Number
Number

number 00001111 is moved to W
is moved to PORTB

hFF is moved to W

is moved to variable "counter2"

hFF is moved to W

is moved to variable "counterl"

Decrements "counterl" by 1. If result is

skip next instruction

Decrements "counter2" by 1. If result is

skip next instruction

Jump to label loop

End of

program

If you have read the previous example, you would have noticed a disadvantage of providing delays using loops. In all these cases, the microcontroller is "captive" and does nothing. It simply

waits for some time to pass. Such wasting of time is an unacceptable luxury and some other method should be applied.

Do you remember the story about the timers? About interrupts? This example makes links between them in a practical way. The schematic is still the same as well as the challenge. Itis
necessary to provide delay long enough to notice changes on a port. This time, the timer TMRO with the assigned prescaler is used for that purpose. Interrupt occurs on every timer register
overflow and interrupt routine increments the number in port B by 1. The whole procedure is performed "behind the scenes" of the whole process, which enables the microcontroller to do

other things.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

128/155

16/2/2016

Pay attention to a few details:

interrupt routine;

« Interrupt causes the appropriate flag bit to be automatically set and the GIE bit to be automatically cleared. At the end of the interrupt routine, do not forget to

2%20-30pF —E
GND —=

« Even though it is unnecessary in this case, the contents of the most important registers (W, STATUS and PCLATH) must be saved at the beginning of the

Introduction: World of microcontrollers - Book: PIC Microcontrollers

...254,255,0,1, 2, 3...

VCC (5V)
J i = [- Lo el .
ﬁ!! | i e
10K
Lep *7 _330R
MCLR RB7 |}
[] rao RBES [/ Py
[rRa1 RBS —— LED 330R]
[ra2 RB4 [—— e
[l ra3 RE3 Er
[ra4 RE2 [F——— LED R
Qras U RBi[F—
[| R0 O RBO[J— Lep "' 3s0R
[| rRE1 - vdd []
[l rRE2 (=2} vss [| i
(odd g3 7l LED 330R
Ves 0o Ros [l =
osct =~ RDS || o
oscz I Ro4ll LED_&_ _330R_
RCO rc7 |1 [—I
RC1 RCé |[] A1 a30R
RC2 rcs (1 L LED EE—
RC3 RC4 []
RDO RD3 [] Lep 7 _330R
RD1 rD2 ||

return these bits to the state they had prior to the interrupt occurring; and
« At the end of the interrupt rutine, important registers should be given the original content.

Source Code

REK KKK KKKk K KKKk kK kkkkk Hogder **x %k Kk &k k ok k ok k ok k ok k ok k kK ok Kok Kok Kk Kok Kk Kk Kk Kk Kk Kk Kk X

jREK KKKk kkxkKkkkkk* DEFINING VARIABLES * %k %ok k ok k ok & ok k ok k ok & ok ok & ok % ok ok ok & ok % ok & ok Kok & ok ok ok Kk %

cblock
w_temp
pclath_temp
status_temp
endc

jR*K KKk KKKk kkkkkkkxkkxkkx* START OF

org
goto

R KKk ok ok ok K ok ok Kk Kk ok Rk ok Kk ok Kk k

org
movwf
movf
movwf
mov £
movwf

banksel

incf

banksel
bef

movE
movwif
movf
movwf
swapf
swapf

bsf
retfie

0x20

0x0000

main

0x0004
w_temp
STATUS
status_temp
PCLATH
pclath_temp

PORTB
PORTB

INTCON
INTCON, TMROIF

pclath temp,w
PCLATH
status_temp,w
STATUS
w_temp, £
w_temp,w

INTCON, GIE

Block of variables starts at address 20h

Variable at address 20h
Variable at address 21h
Variable at address 22h

PROGRAM * % % % % % % % k % & % k ok % % Kk % % Kk % %k k &k %k %k %k k%

7

7

7

Address of the first program instruction

Go to label "main"

Interrupt vector
Saves value in register W

INTERRUPT ROUTINE %% % % k% % % K % % % % ok % % & % % % % % % % % % ok % ok % & & %

Saves value in register STATUS

Saves value in register PCLATH

Selects bank containing PORTB

Increments register PORTB by 1

Selects bank containing INTCON

Clears interrupt flag TMROIF

PCLATH is given its original content

STATUS is given its original content

W is given its original content

Global interrupt enabled

Return from interrupt routine

3 RR KKk ok ok k ok ok ok ok ok koK ok kkokkk MATN PROGRAM % % % ks ok

main

banksel
clrf
clrf

ANSEL
ANSEL
ANSELH

;

i
;

;

Start of the main program

Bank containing register ANSEL
Clears registers ANSEL and ANSELH

All pins are digital

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

~— GND

129/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

banksel TRISB ; Selects bank containing register TRISB
clrf TRISB ; All port B pins are configured as outputs
banksel OPTION_REG ; Bank containing register OPTION REG
bcf OPTION_REG,TOCS ; TMRO counts pulses from oscillator
bcf OPTION_REG,PSA ; Prescaler is assign to timer TMRO
bsf OPTION_REG,PSO ; Prescaler rate is 1:256
bsf OPTION_REG, PS1
bsf OPTION_REG,PSZ
banksel INTCON ; Bank containing register INTCON
bsf INTCON, TMROIE ; TMRO interrupt overflow enabled
bsf INTCON, GIE ; Global interrupt enabled
banksel PORTB ; Bank containing register PORTB
clrf PORTB ; Clears port B
loop

goto loop ; Remain here
end ; End of program

Example 5

Using subroutine, using push-buttons

In the previous examples the microcontroller executes the program without being influenced in any way its surrounding. In practice, devices operating in this way are very rare (for example,

simple neon signs). You guess, among other components, input pins will also be used in this example. There is a schematic in the figure below, while the program is on the next page.

Everything is still very simple.

F

10K 10K
RESET
pr————
l”—c MCLR |~ RB?
[l rao RBE
{] ra1 RB5
[l raz RB4
[} ra3 RE3
l [| rag RB2
Sivi Qras U reif—
[reo (@) RBO [—
f [} re1 = vdd 1
vee [| re2 =2} vss [1
O————] Dad ; ro7 [1
GND T‘: Vss m ROG :l
1 — osc1 ~J Ros|[
- = —{| osc2 RD4 [
[l rco rc7 [1 48
[rct Rce [# 330R
8MHz ¢ (] E il fcs % LED
i RC3 RC4
2x20-30pF tsice g - 22 a30R
[l ro1 rDz [] —
GND —

~— GND

Atthe beginning of the program, immediately upon defining variables, the microcontroller pins* are configured by using registers TRISA and TRISB.

In the main program, one bit on port B is set first. Then the contents of this register is constantly moved by one place to the left (instruction rlf PORTB). It gives us the impression that the lit

LED diodes is moving. To make it visible, the whole process must be slow enough. Press on the push-button "STOP" stops the movement and the program remains in loop3. Delay is

provided by means of a nested loop. This time, it is placed in a short subroutine "DELAY".

* Itis not necessary for PORTA pins since they are automatically configured as inputs after every reset.

Source Code

K kK K ok ok ok ok ok K ok ok K ok ok K ok ok kK ok ok K ok ok kK ok ok K ok kK ok ok K K ok K K ok ok K ok ok K K ok ok K ok ok K ok ok K ok ok K K ok ok K ok kK Kk K Kk K Kk

; Header

3 kK K ok ok K ok ok K ok ok K ok ok ok ok ok kK ok ok K ok ok ko ok ok K ok kK ok ok K o ok ok K ok ok K ok ok K K ok ok K ok kK ok ok K ok ok K o ok ok K ok ok K ok ok K ok Kk ok

pRFK xRk kkkkkkx DEFINING VARTIABLES %% k% %k sk ok ok sk ok ok ko ok

cblock 0x20 ; Block of
counterl ; Variable
counter2 ; Variable
endc ; Block of

variables starts at address 20h
"counterl" at address 20h
"counter2" at address 21h
variables ends

REK KKKk kK kKKK Kk kkkkkkkkk MATN PROGRAM * * % %k % ok & ok k ok k ok & ok ok & ok % ok k ok & ok % ok ok ok Kok & ok ok ok Kk %

org 0x0000 ; Address of the first program instruction
banksel ANSEL ; Selects bank containing register ANSEL
clrf ANSEL ; Clears registers ANSEL and ANSELH to

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

130/155

16/2/2016
clrf

banksel
clrf
movlw
movwf

banksel

movlw

movwf
loop

rlf

call
loop3

btfss

goto

goto

ANSELH

TRISB
TRISB
B'00000010"
TRISA

PORTB
B'00000001"
PORTB

PORTB
DELAY

PORTA, 1
loop3
loop

Introduction: World of microcontrollers - Book: PIC Microcontrollers

; configure all inputs as digital

; Selects bank containing register TRISB

; All port B pins are configured as outputs

; Pin RAl is input

; Selects bank containing register TRISB
; Writes 1 to register W
; Number is moved to PORTB

; Port B bits rotates by one place left
; Calls subroutine "DELAY"

; Tests the firs port A bit
; "0" is applied to pin.Go to label "loop3"
; "1" is applied to pin.Go to label "loop"

JRKKK KKK KKK KKK Kk kk Ak kkk**x GUBROUTINES *H* Kk kkkkkkkkkkkkkkkkkkkkkkkkkkkk Kk kkk k%

DELAY
clrf
loopl
clrf
loop2
decfsz
goto
decfsz
goto

return

end

EXAMPLE 6

counter?2

counterl

counterl
loop2
counter?2

loopl

; Clears variable "counter2"

; Clears variable "counterl"

; Decrements variable "counterl"™ by 1
; Result is not 0. Go to label loop2
; Decrements variable "counter2" by 1
; Result is not 0. Go to lab loopl

; Return from subroutine "DELAY"

; End of program

TMRO as a counter, defining new variables, using relay

This time, TMRO is used as a counter. The idea is to connect the counter input to one pushbutton so that it counts one pulse at a time upon every button press. When the number of counted
pulses becomes equal to the number in register TEST, logic one voltage (5V) will be applied to the PORTD, 3 pin. Since this voltage activates an electro-mechanical relay, this bitis called

the same- "Relay".

In this example, the TEST register contains number 5. Naturally, it could be any number and could be calculated or entered via the keyboard. Instead of a relay, the microcontroller can
activate some other device and instead of push-buttons it can use sensors. This example illustrates one of the most common uses of the microcontroller in industry. When something is done
as many times as needed, then something else should be switched on or off...

Source Code

v%c
10K
o
RESET
l|]| > o—e—{MclR ' RB7[]
[l RAD RBG |]
[rat RBS5 [J
[| raz RB4 |]
[| rA3 rRB3 [I
{l RA4 rRB2 [I
lras U ge1ll
[| Re0 O reol
[re1 - vdd [1
10K vce [| re2 =] vss]
O—| pdd g RD7 ||
ﬁ Vss o RDS |1
— L osct =~] Ros|[
GND osc2 RD4 |]
[l Rco rRc? [1
[re RCE |1
8MHz]]‘ Eﬂcz Ree %
RC3 RC4
ZERNF, [l roo RD3 [
[l Ro1 rRD2 []
GND

K kK K ok kK ok ok K ok ok K ok ok K ok ok kK ok ok K ok ok ko ok ok K ok ok K ok ok K K ok K K ok ok K ok ok K ok kK ok K K ok ok K Sk ok K K ok ok K ok kK Kk K Kk K Kk

7

Header

3 kK ok ok ok ok ok K ok ok K ok ok ko ok kK ok Sk K ok ok kK ok ok K ok ok K ok ok kS ok ok K ok ok K ok ok ko ok ok K ok kK ok ok ok ok ok ko ok ok K ok ok ok S ok kK ok Kk ok

§RK KK Rk Kk Kk ok kK

DEFINING VARIABLES ***k*xkxkkkkkkkhkkkhkkhkkkhxhhhkkhkkkkkhkkxhhxkhxkhkrx

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

vcc

131/155

16/2/2016

TEST equ B'00000101"

#define RELAY PORTD, 3

7

7

Introduction: World of microcontrollers - Book: PIC Microcontrollers

Binary number 00000101 = TEST
Pin PORTD,3 = RELAY

REK KKK KKKk KKKk kkkkkkkkkx MATN PROGRAM * % % %k % o & o k ok % o k ok & ok & ok % ok & ok % ok X ok &k Kok &k ok k k k%

org 0x0000
banksel TRISB
clrf TRISB
clrf TRISD
movlw B'00010000"
movwif TRISA
banksel OPTION_REG
bsf OPTION_REG, TOCS
bsf OPTION_REG, PSA
banksel PORTB
clrf TMRO
bcf PORTD, 3
loop

movEiw TMRO
movwif PORTB
xorlw TEST
btfsc STATUS, Z
bsf PORTD, 3
goto loop
end

EXAMPLE 7

;

7

7

Address of the first program instruction

Selects bank containing register TRISB
All port B pins are configured as outputs
All port D pins are configured as outputs
This number is written to W register

Only the forth pin of port A is input

Bank containing OPTION REG register
Pin RA4 is supplied with pulses
Prescaler rate is 1:1

Selects bank containing PORTB register

Clears timer register
Pin PORTD,3 = 0

Timer register is moved to W register
W register is moved to PORTB
Operation exclusive OR between

W register and number TEST (00000101)
If numbers are equal, result is 0 and
bit STATUS,Z = 1. Bit PORTD,3 is set
and jump to label loop is executed

End of program

Using macros in the program, using debounce routine

You have probably noticed in the previous example that the microcontroller does not always operate as expected. Namely, by pressing the push-button, the number on port B is not always

incremented by 1. Mechanical push-buttons make several short successive contacts when they have been activated. You guess, the microcontroller registers and counts all that...

INCREMENT

vee w204 265,0,1, 2. 3.

ﬁ.) @3

_ﬁ__ﬁ_ .

10K |10K 10K
RESET
— — . wep 7 _330R
— MCLR re7 [t
{l rao RB6 [
o
{l Rat RES LED 330R

[raz RB4

[ras RB3

[1ras REZ

O ras o RE1

- [1re0) RBO[——
DECREMENT [rE1 = vad [1
vee [re2 [=2] Ves |1
O——{lpad g ro7 [
{] vss co rD6 [1
GND —— osc1t =~ rDS [1
0sC2 rRoa [1
[reo rer 1
BMHz [|| Lrer Reé 1
[rec2 Rres |1
= 9 Orea rea [1
2x20-30pF —[D aoa i
J 0 ro1 ro2 [1
GND —

GND —

There are several ways to solve this problem. This program uses program delay known as debounce. Basically, it is a simple procedure. Upon input change detection (button press), a short

program delay is provided and the program waits for another change (button release). Only after this, the program comes to a conclusion that the button is activated.

In this very case, the push-button is tested by means of macro called button. Besides, this macro contains a program delay which is provided by means of another macro pausems.

The main program is relatively simple and enables the variable "cnt" to be incremented and decremented by using two push-buttons. This variable is thereafter copied to port B and affects
the LED (logic one (1) turns LED diode on, while logic zero (0) turns LED diode off).

Source Code

pRHRK KKK KKKk Kk kkkkxkkkxkkk Hogder Fh KKKk kkkokdkokok Rk kkkkkkk

jrRFI xR Kk kkkkkx DEFINING VARIABLES * % % %%k k% ok k% % k % K Kk % K k & % &k k 4

cblock 0x20

HIcnt
LOcnt
LOOPcnt

7

Block of variables starts at address 20hex

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

132/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

cnt
endc ; End of block of variables

3K kK R ok kK ok K ok K ok ok K ok ok ok ok ok K ok ok K ok ok o ok kK ok ok K ok K R ok ok K ok ok K ok Kk ok K ok kK K Sk K ok ok K R ok K R Rk K

ORG 0x000 ; Reset vector
nop
goto main ; Go to program start (label "main")

3k ok K ok ok ok ok ok ok K ok ok K ok ok ok ok ko ok ok K ok ok ko ok ok ok kK ok ok K ok ok ok o ok ok K ok ok K ok ok ko ok K ok ok kK ok ok K ok ok K ok ok ok K ok ok ok

include "pause.inc"
include "button.inc"

34k ok Kk ok ko ok ok ok ok ok K ok ok ok ok ok ok o ok ok K ok K ok ok ok

main
banksel ANSEL ; Selects bank containing ANSEL
clrf ANSEL ; All pins are digital
clrf ANSELH
banksel TRISB
bsf TRISA, O
bsf TRISA, 1
clrf TRISB
banksel PORTB
clrf cnt
Loop
button PORT, 0,0, Increment
button PORT, 1,0, Decrement
goto Loop
Increment
incf cnt, £
movEf cnt, w
movwf PORTB
goto Loop
Decrement
dect cnt, £
movEf cnt, w
movwf PORTB
goto Loop
end ; End of program

Macro "pausems"”

7KK K R kKK ek kK ok ok Kk ok ok ok kK ok ok Kk Sk ok ok K K ok kK ok K ok kK ok ok K ok K ok K ok K K ok K ok Kk ok K K kK

pausems MACRO argl

local Loopl
local dechi
local Delaylms
local Loop2
local End
movlw High (argl) ; Higher byte of argument is moved
; to HIcnt
movwf HIcnt
movlw Low (argl) ; Lower byte of argument is moved
; to LOcnt
movwf LOcnt
Loopl
movf LOcnt, f ; Decrements HIcnt and LOcnt while
btfsc STATUS, 7 ; needed and calls subroutine Delaylms
goto dechi
call Delaylms
decf LOcnt, £
goto Loopl
dechi
movf HIcnt, f
btfsc STATUS, 7
goto End
call Delaylms
decf HIcnt, f
decf LOcnt, f
goto Loopl
Delaylms: ; Delaylms provides delay of
movlw .100 ; 100*10us=1ms
movwf LOOPcnt ; LOOPcnt<-100
Loop2:

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 133/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

nop
nop
nop
nop
nop
nop
nop
decfsz LOOPcnt, f
goto Loop?2 ; Execution time of Loop2
return ; is 10 us
End
ENDM

K kK K ok kK ok ok K ok ok K ok ok K ok ok ko ok ok K ok ok K ok ok kK ok kK ok ok K ok ok K K ok ok K ok ok K ok ok K K ok K ok ok kK ok ok K ok ok K R ok ok kK kK

Macro "button™

K kK K ok kK ok ok K ok ok K ok ok K ok ok K ok ok kK ok ok K ok ok K ok Kk ok kK ok ok K Rk K Kk ok Kk kK K ok

button MACRO port,pin,hilo,label

local Pressedl ; All labels are local

local Pressed2

local Exitl

local Exit2

IFNDEF debouncedelay ; Enables debounce time to be defined

; in main program

#define debouncedelay .10

ENDIF

IF (hilo == 0) ; If pull-up used

btfsc port, pin ; If "1", push-button is pressed

goto Exitl

pausems debouncedelay ; Wait for 10ms debounce
Pressedl

btfss port, pin

goto Pressedl

pausems debouncedelay ; Wait until released and

goto label ; jump to specified address
Exitl

ELSE ; If pull-down used

btfss port, pin

goto Exit2 ; If "0", push-button is released

pausems debouncedelay ; Wait for 10ms debounce
Pressed2

btfsc port, pin

goto Pressed2

pausems debouncedelay ; Wait until released and

goto label ; jump to specified address
Exit2

ENDIF

ENDM

R KKk ok ok ok ok ok K ok K ok ok ok K ok K ok K ok ok ok K ok k ok ok ok K ok K ok K ok K ok K ok K ok K ok K ok K ok K ok K ok ok Kk K ok Kk Kk Kk ok Kk ok

EXAMPLE 8

Using timer TMR1 and using interrupt

16-bittimer TMR1 is used in this example. By occupying its registers TMR1L and TMR1H, an interrupt occurs and the number on port B is incremented. This has already been seen in the
previous examples. The difference is in the program delay which is a bit longer this time because the prescaler rate is 1:8.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 134/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

vCC (5V) 2, 288 01,2, 3
i, - B R i . -
R O
10K
RESET
e
I| }—c o MCLR RB7 [}
[l rao RB6
[rat RB5
[l raz RB4
[| ra3 RB3
[l rag RB2
Oras O mBI[l—
[re0 0O RBO [
[l re" — vdd [J
GND vee [rRe2 =2} vss [1
——{| Ddd g RD7 [J
I| }—[Vss 0 RDE |]
osct =J RD5 |]
oscz > RD4|l
}_l [l reco RC7 []
| [l re1 RCE |]
sl _L [l re2 RC5 []
2x20-30pF E . s %
[l ro1 rRDZ [] -
GND —=

Source Code

GREK KKK KKKk Kk kkkkkkkkkkkkkkk Hogder **H*k kK kkkkkxkkkkk kK okkokkk ok Kk ok kokk kK kK Kk KKk Kk

jrR**xk KKk kKkkkk*x DEFINING VARTIABLES ** k% %k k% ok k% ok k% K ok k k ok k% ok ok ok ok ok % % ok kK ok ok ok K ok & Kk Xk k

cblock 0x20 ;
w_temp ;
pclath_temp i
status_temp ;
endc

Block of
Variable
Variable

Variable

variables starts at address 20h
at address 20h
at address 21h
at address 22h

JRKKKK KKK KKK KKKk Kk Ak kkkk*x DROGRAM START ** Kk %k &k k ok %k Kk &k &k %k &% & K

org 0x0000 ;
goto main ;

Address o
Jump to 1

f the first program instruction
abel "main"

pRHEK KKK KKKk Kk kkkkxkkxkkkk TNTERRUPT ROUTINE ** k% %k % K K ko & k& & k& o k % % & kK & k & % ok % & k % %

org 0x0004 ;
movwf w_temp ;
movf STATUS ;
movwf status_temp

movf PCLATH ;
movwf pclath_temp
banksel PORTB ;
incf PORTB ;
movf pclath _temp,w ;
movwf PCLATH

movf status_temp,w ;
movwf STATUS

swapf w_temp, £ ;
swapf w_temp,w

banksel PIR1 ;
bef PIR1, TMRIIF ;
bsf INTCON, GIE ;
retfie ;

Interrupt
Save regi

Save regi

Save regi

Selects b

Register

PCLATH is

STATUS 1is

W is give

Selects b

Clears in

Global in
Return fr

vector
ster W

ster STATUS

ster PCLATH

ank containing PORTB

PORTB is incremented by 1

given its original content

given its original content

n its original content

ank containing PIRI1

terrupt flag TMRIIF

terrupt enabled
om interrupt routine

pREK KKK KKKk Kk kkkkxkkkkkkk MATN PROGRAM * % %k k% % k% o k% K ok k ok & k% ok k% ok ok % ok ok % K ok ok & ok ok % ok ok % %

main ;
banksel ANSEL ;
clrf ANSEL ;
clrf ANSELH ;
banksel TRISB ;
clrf TRISB ;
banksel T1CON ;

Start of main program

Selects b
Clears re
All pins

Selects b
All port

Selects b

ank containing register ANSEL
gisters ANSEL and ANSELH

are digital

ank containing register TRISB
B pins are configured as outputs

ank containing register T1CON

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

GND

135/155

16/2/2016
bcf

bsf
bsf
bsf

banksel
bsf
bsf

bsf

banksel

clrf
loop

goto

end

EXAMPLE 9

Introduction: World of microcontrollers - Book: PIC Microcontrollers

T1CON, TMR1ICS ; TMR1 counts pulses generated by oscillator
T1CON, TICKPSO ; Prescaler rate is 1:8
T1CON, T1CKPS1
T1CON, TMR1ON ; Turns on timer TMRI1
PIE1 ; Selects bank containing register PIEL
PIE1l, TMR1IE ; TMR1 interrupt overflow enabled
INTCON, PEIE ; Peripheral modules interrupt enabled

; Timer TMR1 belongs to peripheral modules
INTCON, GIE ; Global interrupt enabled
PORTB ; Selects bank containing register PORTB
PORTB ; Clears port B
loop ; Remain here

; End of program

Using timer TMR2, configuring quartz oscillator

This example illustrates the use of timer TMR2. The microcontroller uses internal oscillator HFINTOSC with the frequency of 500 kHz. The whole program works as follows: After the period of
time defined by register PR, prescaler and postscaler has expired, an interrupt occurs. Interrupt routine decrements the content of the PR register and simultaneously increments the content
of port B. Since the number in register PR, which determines when interrupt is to occur is constantly decremented, interrupt will occur for shorter and shorter periods of time. In other words,
counting will be carried out faster. A new cycle of accelerated counting starts after every register PR overflow.

Source Code

REK KKK KKK KRR KKKk Kk kkxkk Hogder * %k %k &k &k Kok k ok x ok & ok k ok Xk Kk ok ok K ok % ok K ok K ok K ok K ok K ok K ok K ok ok kK ok ok ok Kk

jRFA KKKk kkk*kkx DEFINING VARIABLES * %k % %k % % ok k% o ok % o ok o ok & o ok k& ok ok & ok ok & % o ok ok ook & K ok %ok ok ko ok ok % ok

cblock

w_temp

pclath temp
status_temp

endc

0x20

3 kK K ok ok ok ok ok K ok ok K ok ok kK ok ok ok ok ok K

org
goto

0x0000

main

R KKk ko ok K ok ok Kk Kk ok kK ok K k kK ok

org
movwf

movE

movwif

movf

movwf

banksel
incf
banksel
decft
mov £
movwf
movf
movwif
swapf
swapf

banksel
becf

bsf
retfie

; Block of variables starts at address 20h
; Variable at address 20h
; Variable at address 21h
; Variable at address 22h

PROGRAM START % % % s s % o s 5 o o sk 5k ok ok ok Kk ok ok 5 ok o ok ok o ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok

; Address of the first program instruction
; Jump to label "main"

INTERRUPT ROUTINE %% % % % % % % K % % % % ok & k &k % %k %k k kK k ok k ok kk kXX xx kK

0x0004 ; Interrupt vector

w_temp ; Save register W

STATUS ; Save register STATUS

status_temp

PCLATH ; Save register PCLATH

pclath_temp

PORTB ; Selects bank containing PORTB
PORTB ; Increments PORTB register by 1

PR2 ; Selects bank containing PR2

PR2 ; PR2 1s decremented by 1

pclath temp,w ; PCLATH is given its original state
PCLATH

status_temp,w ; STATUS is given its original state
STATUS

w_temp, £ ; W is given its original state
w_temp,w

PIR1 ; Selects bank containing PIR1

PIR1, TMR2IF ; Clears interrupt flag TMR2IF
INTCON, GIE ; Global interrupt enabled

; Return from interrupt routine

KRk Kk ok ok ok Sk ok ok ok ok ok ok kok ok kokokk ok MATN PROGRAM % % % ok ok ok ok ok o ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok % ok ok ok ok ok ok ok

main
banksel
bcf
bsf
bsf
bsf

OSCCON

OSCCON,
OSCCON,
OSCCON,
OSCCON,

; Start of the main program
; Selects bank containing register OSCCON

6 ; Selects internal oscillator HFINTOSC with
5 ; frequency of 500KHz

4

0 ; Microcontroller uses internal oscillator

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

136/155

16/2/2016

banksel
clrf
clrf

banksel
clrf
clrf

banksel
movlw
movwf
clrf

banksel
bsf
bsf

bsf
loop

goto

end

EXAMPLE 10

ANSEL
ANSEL
ANSELH

TRISB
TRISB
PR2

T2CON
H'FF'
T2CON
PORTB

PIEL
PIE1l, TMR2IE
NTCON, PEIE

INTCON, GIE

loop

Module CCP1 as PWM signal generator

Since the CCP modules have a wide range of possibilities they are commonly used in practice. This example illustrates the use of CCP1 module in PWM mode. Bits of the CCP1CON

Introduction: World of microcontrollers - Book: PIC Microcontrollers

Selects bank containing register ANSEL
Clears registers ANSEL and ANSELH
All pins are digital

Selects bank containing register TRISB
All port B pins are configured as outputs

Selects bank containing register T2CON
Sets all control register bits
prescaler=1:16, postscaler=1:16 TMR2=0N

Selects bank containing register PIEL
TMR2 interrupt enabled

Peripheral modules interrupt enabled
Timer TMR2 belongs to peripheral modules
Global interrupt enabled

Remain here
End of program

register determine that the module operates as a single-output PWM. The same bits determine the PWM frequency to be 4.88 kHz. To make things more interesting, the duration of the
output P1A (PORTC,2) pulses may be changed by means of push-buttons symbolically called "DARK" and "BRIGHT". Push-buttons are tested in interrupt routine initiated by the timer TMR1.
Any change affects the LED diode so that it changes light intensity. Note that port B does not use external resistors because internal pull-up resistors are enabled. The whole process of
generating PWM signal is performed "behind the scenes", which enables the microcontroller to do other things.

Source Code

VCC
1
10K
RESET
— :
I }—0 MCLR re7 |]
[rao RE6 []
[l raa rBs |1
[raz RrB4 []
[ras re3 [1
[ras rB2 ||
[ras o RB1
[reo (@) RBO [F—
[l re1 - vdd [] <]: DARK
vce [rez o vss []
O] Ddd | ROT I
{]vss g RODG [] BRIGHT
__J__ osct =~ RDS |1
GND oscz RD4 []
[l rco Rrcr [
BMHz [l [ret RCE& :|
RC2 Rrcs [1 —— enD
— L ag =
[ro1 ro2 1

GND —

B

LED

330R

— GND

J KKK Rk kK k ok Kk ok ok ok ok kokk ok kk Fegder KRk Rk ok ok kok ok ok ok ok ok ok ok K Kk ok ok K ok K K ok ok K ok ok K K ok ok K ok ok K R ok K K ok K Kk K

jrRFA KAk kkkkkkx DEFINING VARIABLES ** k% %k k% ok k% k% Kk kK k kK ok k& %k & K ok kK Kk kA Kk & Kk % %k k

cblock
w_temp
pclath_temp
status_temp
endc

#define

#define

0x20

DARK PORTB,

0

BRIGHT PORTB, 1

7
7

7

7

;

;i

Block of variables starts at address 20h
Variable at address 20h
Variable at address 21h
Variable at address 22h

Push-button "DARK" is connected
to PORTB,0 pin

Push-button "BRIGHT" is connected
to PORTB,1 pin

KRR KKk Kk kK ok ok Kk ok ok ok k ok kk ok k DROGRAM START % % k% o ok % o ok % % ok kK ok ok % % ok % % o ok K ok & % ok % ok ok

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

137/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

org 0x0000 ; First program instruction address
goto main ; Jump to label "main"

GRRK KKKk Kk ok kkkkkkkkkkkkkk TNTERRUPT ROUTINE %% k% % o ok ok sk ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ok & K ok ok ok ok

org 0x0004 ; Interrupt vector

movwft w_temp ; Save register W

movf STATUS ; Save register STATUS

movwf status_temp

movf PCLATH ; Save register PCLATH

movwf pclath_temp

banksel CCPRI1L

btfss DARK ; Tests push-button "DARK"

decf CCPR1L ; Push-button is pressed - decrement CCP1L by 1
btfss BRIGHT ; Testing push-button "BRIGHT"

incf CCPR1L ; Push-button is pressed - increment CCPIL by 1
movf pclath temp,w ; PCLATH is given its original content
movwf PCLATH

movf status_temp,w ; STATUS is given its original content
movwft STATUS

swapf w_temp, £ ; W is given its original content
swapf w_temp,w

banksel PIR1 ; Selects bank containing PIR1

becf PIR1, TMRLIF ; Clears interrupt flag TMR1IF

bsf TMR1H, 7 ; Accelerates timer TMRO counting

bsf TMR1H, 6 ;

bsf INTCON, GIE ; Global interrupt enabled

retfie ; Return from interrupt routine

JRKKK KKK KKK KKK Kk Kk Ak kkkk*x MATN PROGRAM **H kk ko &k k ok k ok k ok &k k ok &k &k &k XKk &k Kk kkkkk k%

main ; Start of the main program
banksel ANSEL ; Selects bank containing register ANSEL
clrf ANSEL ; Clears registers ANSEL and ANSELH
clrf ANSELH ; All pins are digital
banksel OPTION_REG ; Selects bank containing register ANSEL
bcf OPTION_REG,7 ; Pull-up resistors enabled
bsf WPUB, 0 ; Pull-up resistors enabled
bsf WPUB, 1 ; on port B pins 0 and 1
banksel TRISC ; Selects bank containing register TRISC
clrf TRISC ; All port C pins are configured as outputs
banksel T1CON ; Selects bank containing register T1CON
bef T1CON, TMRICS ; TMR1 operates as a timer
bcf T1CON,T1CKPSO ; Prescaler rate is 1:8
becf T1CON, T1CKPS1
bsf T1CON, TMR10ON ; Activates timer TMR1
banksel PIEL ; Selects bank containing register PIEL
bsf PIEl, TMRIIE ; Interrupt TMR1 is enabled
bsf INTCON, PEIE ; Peripheral modules interrupts are

; enabled

bsf INTCON, GIE ; Global interrupt enabled
movlw B'11111101" ; Prescaler TMR2 = 1:4
banksel T2CON
movwf T2CON
movlw B'11111111" ; Number in register PR2
banksel PR2
movwf PR2
banksel CCP1CON
movlw B'00001100" ; Bits to configure CCPl module
movwf CCP1CON

loop
goto loop ; Remain here
end ; End of program

EXAMPLE 11

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 138/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers
Using A/D converter

PIC16F887 A/D converter is used in this example. Everything is quite simple. A variable analog signal is applied on the AN2 pin while the result of conversion is shown on port B as a binary
number. In order to simplify the program as much as possible, only 8 lower bits of the result of conversion are shown. GND is used as a negative voltage reference Vref-, while positive
voltage reference is applied on the AN3 pin. It enables voltage measurement scale to "stretch and shrink".

To make this clear, the A/D converter always generates a 10-bit binary result, which means that it detects a total of 1024 voltage levels (210=1024). The difference between two voltage
levels is not always the same. The less the difference between Vref+ and Vref, the less the difference will be between two of 1024 levels. Accordingly, the A/D converter is able to detect
slight changes in voltage.

vCcC
10K
RESET
ot i T LED i 330R
|| }—C' 0—1—E McLR — mer [}
ltage to measure E RAD RBBE
RA1 RES
[|raz RB4 [H—"
veo [|ras RB3 [
i vee [ras RBZ [F————
[ras e rRB1 [—
'oltage Reference [reo 0O REO [F—— LED A2 a30R
[|rE1 ; vdd [1
vece [re2 Vss
| pdd g RD7 ::]'1 Lep 7 _330R
Tvee & ol ao |||
—= osct ~I RDs[] o
GND osc2 RrD4 (] LED |
8MHz ¢-] [rco RCT % :I,c]
[reca RCE ; 330R
2x20-30pF ez Rres 1 LED e
NIE_ [reca rea (1 gt
GND [| roo roa [1 LED o _330R
— [ro1 ro2 [1 - 1

— GND
Source Code

JRKKK KKK KKK KKK Kk Kk Ak kk k% Hogder KA ArArkhkkkk Kk Ak kk Kk Kk Kk kk Kk Kk Kk Kk kk Kk Kk kK k%

GREK KKK KKKk KKKk Kk kkkkkkx DROGRAM START * % %k %o & ok k ok ko k ok & ok & ok % ok & ok & ok X Kk & ok K ok & Kk Kk ok ok %

org 0x0000 ; Address of the first program instruction
banksel TRISB ; Selects bank containing register TRISB
clrf TRISB ; All port B pins are configured as outputs
movlw B'00001100"

movwf TRISA ; Pins RA2 and RA3 are configured as inputs
banksel ANSEL ; Selects bank containing register ANSEL
movlw B'00001100" ; Inputs AN2 and AN3 are analog while

movwft ANSEL ; all other pins are digital

clrf ANSELH

banksel ADCON1 ; Selects bank including register ADCON1
bsf ADCON1, ADFM ; Right justification of result

bef ADCON1, VCFG1 ; Voltage Vss is used as Vref

bsf ADCON1, VCFGO ; RA3 pin voltage is used as Vref+

banksel ADCONO ; Selects bank containing register ADCONO
movlw B'00001001" ; AD converter uses clock Fosc/2, AD channel
movwf ADCONO ; on RA2 pin is used for conversion and

; AD converter is enabled

loop

banksel ADCONO

btfsc ADCONO, 1 ; Tests bit GO/DONE

goto loop ; Conversion in progress, remain in
; loop

banksel ADRESL

movf ADRESL, w ; Lower byte of conversion result is
; copied to W

banksel PORTB

movwf PORTB ; Byte is copied to PORTB

bsf ADCONO, 1 ; Starts new conversion

goto loop ; Jump to label "loop"

end ; End of program

EXAMPLE 12

Using EEPROM memory

This example demonstrates write to and read from built-in EEPROM memory. The program works as follows. The main loop constantly reads EEPROM memory location at address 5
(decimal). This number is displayed on port D. The same loop tests the state of three push-buttons connected to port A. The push-buttons "INCREMENT" and "DECREMENT" have the same

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 139/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

purpose like in example 7 - increment and decrement the variable "cnt" which is thereafter displayed on port B. The push-button "MEMO" enables that variable to be written to EEPROM
memory. In order to check it, itis enough to press this push-button and switch off the device. On the next switch on, the program displays the value of the variable on port D (at the moment of

writing, this value was displayed on port B).

VCC

-]

HTOK HWK Jﬂ!l(R_-ESEr 10K

H

RBT
{] Rao REE
& & {l rat RES
¥ i { maz RB4
o [raz RB3
E 5 g ‘ 00 raa RBZ
= z [ras i) RE1
[reo (@) REO
[ret % vdd
VCC [rE2 o Vs
S———| Dad g ROT
{] vas o RDE
— GND osc1 =~ RDS
oscz RO&
[reo RCT
Mz 4] 0 re1 RCE
E RCZ RCS
el RC3 RC4
HE0pE RDO RD3
{1 ro1 RDZ
GND —

Source Code

o
LED 330R

Erd
LED J20R

o
LED 330R

A7 3

LEDII —

LED I I :_.__.

Ed
Lep 7 3aR

ax
LED 330R

i
wep 7 330R
— N

LEp 7 330R
wep 7 3a0m
tep T 3uR
=S pS=a
ep 7 sam

a
LED 330R

Takuli: 1)

LEDII l:l

ax
LED 330R

4

GND —

GND —

KRR K Rk K K ok Kk ok Kk k koK ok ok ok ok Hegder Kk K Kk k K ok ok K ok ok ok ok ok K ok ok ok K K ok K ok K K ok kK ok ok K ok K K ok Kk ok K

pRFFkRkkxkxx%x Defining variables 1n Program * % %% %k kxkkkkkkokdkk & & & % % &k kok koo ookok ok

cblock 0x20 ; Block of variables starts at address 20h

HIcnt

LOcnt

LOOPcnt

cnt

endc ; End of block

3k ok Kk ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok K ok ok K ok ok ke ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok

ORG 0x000 ; Reset vector
nop
goto main ; Go to start of the program (label "main")

KRR R ok kK ok K ok kK ok ok K ok ok o ok ok K ok ok K o ok K ok kK ok ok K K ok K K ok ok K ok ok K K ok ok K ok K K ok K ok K K ok kK ok K R ok K K ok K ok ok

include "pause.inc"

include "button.inc"

R KKKk ko ok ok ok K ok K ok ok ok K ok K ok K ok ok ok K ok ok ok ok K ok K ok K ok K ok K ok K ok K ok K ok ok ok K ok K ok ok K ok K ok K ok Kk Kk K ok K ok Kk K ok Kk K

main
banksel ANSEL ; Selects bank containing ANSEL
clrf ANSEL
clrf ANSELH ; All pins are digital
banksel TRISB
bsf TRISA, O ; Input pin
bsf TRISA, 1 ; Input pin
bsf TRISA, 2 ; Input pin
clrf TRISB ; All port B pins are outputs
clrf TRISD ; All port D pins are outputs
banksel PORTB
clrf PORTB ; PORTB=0
clrf PORTD ; PORTD=0
clrf cnt ; cnt=0
Loop
banksel PORTA
button PORTA, 0,0, Increment

button PORTA, 1,0,Decrement

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

140/155

16/2/2016

button PORTA, 2,0, Save
banksel EEADR
movlw .5
movwif EEADR
banksel EECON1
bef EECON1, EEPGD
bsf EECON1,RD
banksel EEDATA
moviw EEDATA
banksel PORTD
movwif PORTD
goto Loop

Increment
incf cnt, f
movf cnt, w
movwf PORTB
goto Loop

Decrement
decf cnt, £
movE cnt, w
movwf PORTB
goto Loop

Save
banksel EEADR
movlw .5
movwf EEADR
banksel PORTB
movEiw PORTB
banksel EEDAT
movwif EEDAT
banksel EECON1
bef EECON1, EEPGD
bsf EECON1, WREN
bcf INTCON, GIE
btfsc INTCON, GIE
goto $-2
movlw 55h
movwf EECON2
movlw H'AA'
movwf EECON2
bsf EECON1,WR
btfsc EECON1, WR
goto $-1
bsf INTCON, GIE
bef EECON1, WREN
goto Loop
end

EXAMPLE 13

Two-digit LED counter, multiplexing

Introduction: World of microcontrollers - Book: PIC Microcontrollers

Reads EEPROM memory location

at address 5

Reads data from EEPROM memory

Moves data to W

Data is moved from W to PORTD

Increments number on port B

Decrements number on port B

Copies data from port B to EEPROM
memory location at address 5

Writes address

Copies port B to register W

Writes data to temporary register

Write enabled

All interrupts disabled

Wait for write to complete

Interrupt enabled

Tests push-buttons again
End of program

In this example, the microcontroller operates as a two-digit counter. Concretely, the variable Dval is decremented (slow enough to be visible) and its value is displayed on twodigit LED
display (99-0). The challenge is to enable binary number to be converted in decimal one and splititin two digits (tens and ones). Besides, since the LED display segments are connected in
parallel, itis necessary to ensure that they change fastin order to make impression of simultaneous light emission (time-division multiplexing). Remember that in electronics, multiplexing
allows several analog signals to be processed by one analog-todigital converter (ADC). In this very case, time-division multiplexing is performed by the timer TMRO, while binary to decimal

number conversion is performed in macro "digbyte". Counter may be reset to its starting value (99) at any moment by pressing the pushbutton "COUNTER RESET".

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

141/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

VCC (5V)

VEC (5V) E
MCU RESET
= i |
U
GND
COUNTER mclR — RB7[]
RESET RAD res [
— 0 rat res [1
: [raz rB4 [
[ras rB3 []
ERAA - naa}
RAS Y RB1
L [Reo O real o
o [red — vd [] —
GND GND VGG [| rE2 @ Vas []
—low Rty 4x330R
I||—(Ves oo Ros [l
osct =~ Ros [} 3
o0sc2 ROd [—— B
[reco rer [-]
aMHz 4] [l res res 1 =
[re2 res [
[res Red [
2l-A0nE: ROO RD3 J—l 45-330R
RO RD2 J—| i
GND — I:[e
—

Source Code

;KRR KKk K kR k Kk ok kk ok xkkkkkxkxk Header *

KKK R ok ok ok ok ok K ok ok K ok ok K ok ok kK ok ok K ok ok kK ok kK ok kK

B T

B R

; DEFINING VARIABLES IN PROGRAM

w_temp EQU 0x7D

status_temp EQU Ox7E

pclath_temp EQU 0x7F

CBLOCK 0x20

Digtemp
Dig0
Digl
Dig2
Dig3
Dval
One

ENDC

poc_vr EQU .99

include "Digbyte.inc"

KKK R kK ek kK ok Kk ok kK ok kK ok ok Kk kK ok kK

ORG 0x0000

goto main

KR kK K ok kK ok ok K ok ok K ok ok K ok ok kK ok ok K ok ok kK ok ok K ok kK

ORG 0x0004
movwf w_temp

movf STATUS, w
movwf status_temp
movf PCLATH, w
movwif pclath temp

; Start of interrupt routine

BANKSEL TMRO

movlw .100

movwif TMRO

bef INTCON, TOIF
bcf PORTA, O

bef PORTA, 1
btfsc One, O

goto Lsdon

goto Msdon

; Variable for saving W register

; Variable for saving STATUS register

; Variable for saving PCLATH register

; Block of variables starts at address 20h

; Variables for displaying digits - LSB

; Variables for displaying digits - MSB

; Counter value

; Auxiliary variable which determines which
; display is to be switched on

; End of block of variables

; Initial counter value is 99

B

; First instruction address

; Jump to label "main"

EREE RS SR SRS SRR RS SEEEEEREEEEEEEEEEEEEEEE SR
; Interrupt vector address

; Move w register to w_temp register

; Move STATUS register to status_temp

; register

; Move PCLATH register to pclath temp
; register

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

142/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

Lsdon
incf One, f
movlw HIGH (Bcdto7seqg)
movwif PCLATH
digbyte Dval
movE Digl, w
call Bcdto7seg ; Place L1 mask on the PORTD
movwf PORTD
bsf PORTA, 1
goto ISR_end
Msdon
incf One, f
movlw HIGH (Bcdto7seqg)
movwf PCLATH
digbyte Dval
movf Dig0, w
call Bcdto7seg ; Place LO mask on the PORTD
movwif PORTD
bsf PORTA, O
goto ISR_end
; End of interrupt routine...
ISR_end
movE pclath temp,w ; PCLATH register is given its original
movwf PCLATH ; state
movf status_temp,w ; STATUS register is given its original
movwf STATUS ; state
swapf w_temp, £ ; W register is given its original
; state
swapf w_temp,w
retfie ; Return from interrupt routine
main
banksel ANSEL ; Selects bank containing ANSEL
clrf ANSEL ; All pins are digital
clrf ANSELH
BANKSEL TRISA
movlw b'11111100" ; RAO and RAl are configured as outputs and
; used for 7-segment display multiplexing
; RA2 is input push-button for initializa
; tion
movwf TRISA
clrf TRISD
BANKSEL OPTION_REG
movlw b'10000110" ; TMRO is incremented each 32us (Fclk=8MHz
movwf OPTION_REG
BANKSEL PORTA
movlw poc_vr
movwit Dval ; Dval contains counter value
movlw b'00000001" ; Initializes variable specifying display
movwf One ; to switch on
movwf PORTA
movlw .100
movwi TMRO ; TMRO interrupt appr.every 10ms
bsf INTCON, GIE ; Global interrupt enabled
bsf INTCON, TOIE ; Timer TMRO interrupt enabled
bef INTCON, TOIF
Loop
btfss One, 3 ; Falling edge encountered?
goto Dec ; Yes! Go to Dec
btfss PORTA, 2 ; Counter reset button pressed?
goto Reset ; Yes! Go to Reset
goto Loop
; Decrement Dval counter by 1
Dec
btfss One, 3
goto Dec
movi Dval, f
btfsc STATUS, Z ; Is Dval equal to 0°?
goto Loop ; If it is, go to loop and wait for T2
decf Dval, f ; If Dval not equal to 0, decrement it by 1

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 143/155

Introduction: World of microcontrollers - Book: PIC Microcontrollers

Wait for rising edge

Write initial value to counter

3 kK ok ok ok ok ok K ok ok K ok ok ko ok kK ok Sk K ok Sk kK ok ok K ok ok K ok ok K o ok ok K ok ok K ok ok X K ok ok K ok kK ok ok K ok ok K o ok ok K ok ok K R ok K K ok Kk ok

16/2/2016
goto Loop
Reset
btfss PORTA, 2
goto Reset
movlw poc_vr
movwf Dval
goto Loop
ORG 0x0300
Bcdto7seg
addwf PCL, £
DT 0x3f, 0x06,

Lookup table is at the top of third page, but
can be placed at some other place, it is impor

tant to have it all on one page

Ox6d, 0x7d, 0x07, O0x7f, Oxe6f

R KKk ko ok ok ok K ok K ok ok ok K ok K ok K ok ok ok ok sk ok ok ok K ok K ok K ok K ok K ok K ok K ok K ok ok ok ok ok K ok ok K ok K ok K ok Kk Kk K ok Kk Kk Kk Kk K

END

Macro "digbyte":

digbyte MACRO arg0
LOCAL
LOCAL
LOCAL

clrf
clrf
clrf
clrf

movf
movwf
movlw
Exit2
incf
subwf
btfsc
goto
decf
addwf
Exitl
movlw
incf
subwf
btfsc
goto
decf
addwf
Exit0
movE
movwif
ENDM

; End of program

Exit0
Exitl
Exit2

Dig0
Digl
Dig2
Dig3

arg0, w
Digtemp
.100

Dig2, f
Digtemp, f
STATUS, C
Exit2
Dig2, f
Digtemp, f

.10

Digl, f
Digtemp, f
STATUS, C
Exitl
Digl, f
Digtemp, f

Digtemp, w
Dig0

Macro digbyte is used to convert the number from digital to decimal format. Besides, digits of such decimal number are stored into special registers in order to enable them to be displayed

on LED displays.

EXAMPLE 14

Sound generating, using macros

The generation of sound is a task commonly assigned to the microcontroller. Basically, it all comes to generating a pulse sequence on one output pin. While doing so, the proportion of logic
zero (0) to logic one (1) duration determines the tone pitch and by changing different tones, different melodies arise.

In this example, any press on push-buttons T1 and T2 generates a sound. The appropriate instructions are stored in macro "beep" containing two arguments.

BEEF

MACRO freq,

Freguency: the greater number, the higher tone

duraticn

Ii Duration: the greater number is, the longer it lasts

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 144/155

16/2/2016

Source Code

10K
10K

Introduction: World of microcontrollers - Book: PIC Microcontrollers

b

o

VCC (5Y)

Reset

10K
——

MclR — RBT|[]
RAQ rB6 ||
RA1 RBS []
RAZ RB4 [1
T2 RA3 RB3 ||
RA4 rB2 [I
RAS rRB1 [l
== RED RBo [] VCC GND

L
T“Il—iT

3
[
RE1 a vdd [F—9 ||
RE2 vas (I
Ddd a roT [1
Vss co RDG []
osct =~ RDS]
0sc2 RD4 [|
RCO rer [1
AMHz $-] RCA Rcé [1
RC2 Rres 1
RC3 re4 [1uF
2x20:50pF RDO rD3 [1
RO RD2]——:I
GND —

Iﬂlﬂr-(r-lrﬂrﬂrﬂ.—lrﬂl—-||—1r—|r1|—-||—'|r—1r-||—'|l—1fJ

J KKKk KKKk Kk ok kkkkkkkkkk Hagder Kk Rkk ok k ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok kK ok ok K ok ok K R kK ok Rk K

pREKKAK XK I AKX x KA xxK Defining variables in DProgram * %% x k% x k& xkkx %k k%

cblock
HIcnt
LOcnt
LOOPcnt
PRESCwait
Beep TEMP1
Beep TEMP2
Beep_ TEMP3
endc

0x20

#define BEEPport PORTD, 2
#define BEEPtris TRISD, 2

expand

;i

7

;

Auxiliary variables for macro pausems

Belongs to macro "BEEP"

Speaker pin

3Kk K R ok kK ok K Sk kK ok ok K ok ok ok ok kK ok ok K ok ok ok ok ok K K ok kK ok K R ok kK ok ok K o o K ok Kk ok K K kK ok kK R kK K Rk K

ORG
goto

0x0000

main

;

7

RESET vector address
Jump to program start (label - main)

3 kK ok ok ok ok ok ok K ok ok K ok ok ok ok ko ok ok K ok Sk Kok ok ok ok ok kK ok ok K ok ok K o ok ok K ok ok K o ok ko ok K ok ok kK ok ok K ok ok K ok ok ok K ok ok ok

; remaining code goes here

include

include

include
main

banksel

clrf

clrf

banksel
movlw
movwf
banksel
BEEPinit
Loop
button
button
goto

Playl
BEEP
BEEP
BEEP
BEEP
goto

"pause.inc"
"button.inc"
"beep.inc"

ANSEL
ANSEL
ANSELH

TRISD
b'i1111011"
TRISD
PORTD

PORTD, 0,0, Playl
PORTD, 1,0, Play2
Loop

0xFF, 0x02
0x90, 0x05
0xC0O, 0x03
0xFF, 0x03
Loop

;i

;

Selects bank containing ANSEL
All outputs are digital

PORTA D initialization

Macro "Beep"

Push-button 1

Push-button 2

First tone

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

145/155

16/2/2016
Play2

BEEP
BEEP
BEEP
BEEP
goto

0xBB, 0x02
0x87, 0x05
0xA2, 0x03
0x98, 0x03
Loop

Introduction: World of microcontrollers - Book: PIC Microcontrollers

Second tone

K kK K ok kK ok ok K ok ok K ok ok K ok ok ko ok ok K ok ok K ok ok ok K ok kK ok ok K ok ok K K ok ok K ok ok K ok ok K ok K ok ok kK ok ok K ok ok K R ok ok Kk kK

END

Macro "beep":

BEEPini

BEEP

t MACRO
bef
bef
bef
bsf
bef
bef
movlw
movwf
becf
bef
ENDM
MACRO
bcf
bef
movlw
movwf
movlw
movwf
call
ENDM

STATUS, RPO
STATUS, RP1
BEEPport

STATUS, RPO
STATUS, RP1
BEEPtris

b'00000111"
OPTION_REG
STATUS, RPO
STATUS, RP1

freq, duration

STATUS, RPO
STATUS, RP1
freq

Beep TEMP1
duration
Beep_ TEMP2
BEEPsub

End of program

TMRO prescaler rate 1:256
OPTION <- W

3 kK ok kK ok ok K ok ok K ok ok ok ok ok ko ok ok K ok Sk K ok ok kK ok kK ok ok K ok ok ok o ok ok K ok ok K o ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok K ok ok ok

; Subro

BEEPsub

BEEPa

BEEPDb

B_Wait

B Waita

utines

clrf
bcf
becf

bcf

bsf

call

bef

call

btfss

goto
decfsz
goto BEEPa
return

movf Beep_TE

movwf Beep T

TMRO
INTCON, TOIF
BEEPport

INTCON, TOIF

BEEPport
B_Wait
BEEPport

B Wait

INTCON, TOIF
BEEPDb

Beep TEMP2, f

MP1l, w
EMP3

decfsz Beep TEMP3, f

goto B_Waita
return

EXAMPLE 15

Using LCD display

Counter initialization

Clears TMRO Overflow Flag

Logic one "1" duration

Logic zero "O0" duration
Check TMRO Overflow Flag,
skip next if set

Is Beep TEMP2 = 0 ?

Go to BEEPa again

This example illustrates the use of the alphanumeric LCD display. The program itself is very simple because macros are used (usually the effort of creating Macros pays off in the end).

Two messages written on two lines change on display. The second message is intended to display the current temperature. Since no sensor is installed, the measurement is not really
carried out, the variable "temp" appears on the display instead of the measured temperature.

In reality, the current temperature or some other measured value would be displayed.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

146/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

Data lines

" Control lines

5V
vee
Bk
E -
10K g
wew - Rerf)
[ran rBi]
[rad ras [!
[raz ras [}
EnA) nssz
A4 rez [}
} RESET Oras O il
Oree () meol
[rEt — wdd I
— Orez 9 weell
[} oad =1 roT {I
[vss % ro6 [
0861 =) ro% I
ascz ro (]
AMHz RED rer 1
[ret red 1
20-30pF 20-30pF | [re2 rcs 1
[res rea I
0 roa roa I
= E RO roz]

Source Code

SRK KKK KKK KK KKK KKK KA KK kX * [agdar *x* & x ok k kk k& k ok k kK k% ok Kk k& Kk ok ok Kk ok K kK kK ok Kk
7

; DEFINING VARIABLES IN PROGRAM

CBLOCK 0x20 ; Block of variables starts at address 20h
HIcnt ; Belongs to macro "pausems"
LOcnt
LOOPcnt
LCDbuf ; Belongs to functions "LCDxxx"
LCDtemp
LCDportBuf ; LCD Port Buffer
Digtemp ; Belongs to macro "digbyte"
Dig0
Digl
Dig2
Dig3
temp
ENDC ; End of block
LCDport EQU PORTB ; LCD is on PORTB (4 data lines on RBO-RB3
RS EQU 4 ; RS line connected to RB4
EN EQU 5 ; EN line connected to RB5

3R KKK ko kK ok ok K ok K ok K ok K ok Kk K ok ok ok Kk ok ok ok ok Kk Kk Kk Kk Kk Kk Kk Kk kR Kk Kk Rk kK kKR kK kK kK ok ok

ORG 0x0000 ; Reset vector address

nop

goto main ; Go to beginning of the program (label
;***********************'k**

include "LCD.inc"

include "digbyte.inc"

include "pause.inc"

KKK R ok kK ok K Sk kK ok ok K ok ok ok ok ok K ok ok K ok ok ok ok K K ok ok K ok K R ok K K ok ok K o ok K ok K ok kK K kK ok kK R kK K Rk K

main
banksel ANSEL ; Selects bank containing ANSEL
clrf ANSEL ; All pins are digital
clrf ANSELH
bef STATUS, RPO ; Bank0O active only
bef STATUS, RP1
movlw .23
movwif temp ; Move arbitrary value to variable
; 1s to be displayed on LCD
lcdinit ; LCD initialization
Loop
lcdcmd 0x01 ; Instruction to clear LCD
lcdtext 1, "mikroelektronika" ; Write text from the begin

; ning of the first line
lcdtext 2, "Beograd" ; Write text from the beginning of
; the second line
pausems .2000 ; 2 sec. delay

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

"main")

147/155

16/2/2016
lcdcmd
lcdtext 1,

lcdtext 2,

lcdbyte
lcdtext O,
pausems
goto

Rk KR ok kK ok ok K ok kK ok ok K ok ok K K ok ok K ok ok K o ok kK ok K K ok ok K ok ok K R ok ok K ok ok K ok K K ok K ok ok kK ok ok K ok ok Kk ok ok Rk kK

end

LCD.inc

K kK K ok kK ok ok K ok ok K ok ok K ok ok ko ok ok K ok ok K ok ok ok K ok kK ok ok K ok ok K K ok ok K ok ok K ok ok K ok K ok ok kK ok ok K ok ok Kk ok ok Kk kK

; Initialization must be done by using macro lcdinit before access

; ing LCD

FRKKK KKK KKK KKK KKK KA KK KK KKK KKK KKK KKK I KKK KKK AR KKK KRR KK KK KKK Ak A Kk kA kK Kk k

lcdinit MACRO
bcf
bef
clrf
movf
movwif
bsf
bef
clrf
bef
becf

0x01

Introduction: World of microcontrollers - Book: PIC Microcontrollers

; Instruction to clear LCD

"Temperatural" ; Write text from the begin

; ning of the first line

"temp=" ; Write text from the beginning of

temp
w oo
.2000
Loop

STATUS, RPO
STATUS, RP1
LCDportBuf
LCDportBuf,
LCDport
STATUS, RPO
STATUS, RP1
TRISB
STATUS, RPO
STATUS, RP1

the second line
; Write variable (dec.)
; Write text after cursor
; 2 sec. delay

; End of program

; BankO

w

; Bankl

; LCDport with output LCD

; Function set (4-bit mode change)

movlw
movwf
swapf
movwf
bef

movE
movwif
bsf

movf
movwf
becf

mov £
movwf
call

b'00100000"
LCDbuf
LCDbuf, w
LCDportBuf
LCDportBuf,
LCDportBuf,
LCDport
LCDportBuf,
LCDportBuf,
LCDport
LCDportBuf,
LCDportBuf,
LCDport
Delaylms

; Function set (display mode set)

lcdemd
call

b'00101100"
Delaylms

; Display ON/OFF Control

lcdemd
call

; Entry Mode Set
lcdcemd
call

; Display Clear
lcdemd

pausems

b'00001100"
Delaylms

b'00000110"
Delaylms

b'o000000L"
.40

; Bank0

RS

W

EN

w

EN

w
; 1 ms delay
; 1 ms delay
; 1 ms delay
; 1 ms delay

; 40 ms delay

; Function set (4-bit mode change)

movlw
movwf
swapf
movwf
bcf

movE
movwif
bsf

mov £
movwf
bcf

movf
movwif
call

b'00100000"
LCDbuf
LCDbuf, w
LCDportBuf
LCDportBuf,
LCDportBuf,
LCDport
LCDportBuf,
LCDportBuf,
LCDport
LCDportBuf,
LCDportBuf,
LCDport
Delaylms

RS
w

EN

w

EN

w

; 1 ms delay

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

148/155

16/2/2016

; Function set
lcdemd
call

Introduction: World of microcontrollers - Book: PIC Microcontrollers

(display mode set)

b'00101100"
Delaylms

; Display ON/OFF Control
lcdemd b'00001100"
call Delaylms

; Entry Mode Set
lcdemd b'00000110"

call Delaylms

; Display Clear

lcdemd b'00000001"
pausems .40
ENDM

; 1 ms delay

; 1 ms delay

; 1 ms delay

; 40 ms delay

FRKKK KKK KA K KK KK KK KKK KKK KKK KKK KKK KKK KKK KK KA KKK KKK KK A h A KKK Ak KKk Ak Ak k Kk k

; lcdcemd sends command to LCD

(see the table on the previous page)

; lcdclr is the same as lcdemd 0x01

3k ok Kk ok ok ok ok ok ok K ok ok ok ok ko ok ok K ok Sk ko ok kK ok kK ok ok K ok ok ok o ok ok K ok ok K ok ok ko ok K ok ok kK ok ok K ok ok K ok ok ok K ok ok ok

lcdemd MACRO LCDcommand

movlw LCDcommand
call LCDcomd
ENDM
LCDcomd
movwf LCDbuf
bcf LCDportBuf,
movf LCDportBuf,
movwf LCDport
goto LCDwr
LCDhdata
movwf LCDbuf
bsf LCDportBuf,
movf LCDportBuf,
movwi LCDport
goto LCDwr
LCDwr
swapf LCDbuf, w
call SendW
movEf LCDbuf, w
call SendwW
return
SendW
andlw 0x0F
movwf LCDtemp
movlw 0xFO0
andwf LCDportBuf,
movE LCDtemp, w
iorwf LCDportBuf,
movf LCDportBuf,
movwif LCDport
call Delaylms
bsf LCDportBuf,
movf LCDportBuf,
movwf LCDport
bcf LCDportBuf,
movf LCDportBuf,
movwif LCDport
call Delaylms
return

; Send command to LCD

RS

RS

EN

EN

KRk K R ok kK ok ok K kK K ok ok K ok ok K K ok ok K ok ok K o ok kK ok kK ok ok K ok K K ok ok K ok ok K ok K K ok K ok ok kK ok ok K ok ok K R ok ok Rk kK

; lcdtext writes text containing 16 characters which represents a

; macro argument. The first argument select selects the line in which

; text writing is to start. If select is 0, text writing starts from

; cursor current position.

KRk K R ok kK ok ok K ok ok K ok ok K ok ok K K ok ok K ok ok K ok ok kK ok kK ok ok K ok K K ok kK ok ok Kk ok K K ok K ok ok ok K ok kK ok ok Kk ok ok Rk ok K

lcdtext MACRO select, text
local Message
local Start
local Exit

; This macro writes text from cursor
; current position. Text is specified
; in argument consisting of 16 charac
; ters

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

149/155

16/2/2016

Start

Exit

KRR K R ok kK ok ok K kK K ok ok K ok ok K K ok ok K ok ok K ok ok kK ok K K ok kK ok ok K K ok ok K ok ok Kk ok K K ok K ok ok ok K ok kK ok ok K R ok ok Rk ok K

local i=0
goto Start
Message DT text
DT 0

IF (select == 1)

lcdemd b'10000000"
ELSE

IF (select == 2)
lcdemd b'11000000"
ENDIF

ENDIF

WHILE (i<16)
call Message+i
addlw 0

bz Exit

call LCDdata
i=i+1

ENDW

ENDM

;

Introduction: World of microcontrollers - Book: PIC Microcontrollers

Create lookup table from arguments

Repeat conditional program compiling 16 times
Read lookup table and place value in W

until 0 is read

Call routine displaying W on LCD

; This macro writes value in size of 1 byte on LCD

; exclu

3k ok Kk ok ok ok ok ok ok K ok ok K ok ok ko ok ok K ok Sk ko ok kK ok kK ok ok K ok ok K o ok ok K ok ok K ok ok ko ok K ok ok ko ok ok K ok ok K ok ok ok K ok ok ok

FRKKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK I KKK KK KA KKK KR KKK R KA KK Ak Ak kA k Ak Kk k

lcdbyte MACRO arg0
digbyte arg0
movE Dig2, w
addlw 0x30
call LCDdata
movE Digl, w
addlw 0x30
call LCDdata
movf Dig0, w
addlw 0x30
call LCDdata
ENDM

; lms Delay

Delaylms:
movlw .200
movwif LOOPcnt

DelaylOus:
nop
nop
nop
nop
nop
nop
nop
decfsz LOOPcnt,
goto DelaylOus
return

EXAMPLE 16

ding leading zeros

RS232 serial communication

;

;i

;i

7

A hundred is in Dig2,

A ten is in Digl and one in Dig0

If digit is 0 move cursor

If digit is 0 move cursor

;lus

;lus

;lus

;lus

;lus

;lus

;lus

;lus

;2us

This example illustrates the use of the microcontroller's EUSART module. Connection to the PC is enabled through RS232 standard. The program works in the following way: Every byte
received via the serial communication is displayed using LED diodes connected to port B and is automatically returned to the transmitter thereafter. If an error occurs on receive, it will be

signalled by switching the LED diode on. The easiest way to test device operation in practice is by using a standard Windows program called Hyper Terminal.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

150/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

t

Serial —»<_ | >

Receive [Rx)

Communication
Cable

Transmit (Tx)

il
—_—
RAD
Ra1
Ebd RAZ
RA1

REBET

MOLR

10uF

H i
00 ﬁ
FEER
H
|[|—
-w—l———oé
i
£
BEEE

£884910Id

p
s % " 0F vee
a e [
=0k ——=
o i aNn oscz
= [reo
g roa
e] [l rez
[rea
200 305F [roo
[ro1
Ts o = guo
—
fix

Source Code

pRIKKKK KKKk Kk kkkkxkkxkk*x Hogder **Hkk &Kk &k k &k k &Kk x k& Kkk kK kk&kKkk &Kk kkKkkx

; DEFINING VARIABLES IN PROGRAM

w_temp EQU 0x7D ; Variable for saving W register
status_temp EQU Ox7E ; Variable for saving STATUS register
pclath_temp EQU 0x7F ; Variable for saving PCLATH w register
cblock 0x20 ; Block of variables starts at address 20 h
Port_ A ; Variable at address 20 h

Port_B ; Variable at address 21 h

RS232temp ; Variable at address 22 h

RXchr ; Variable at address 23 h

endc ; End of block of variables

KR K KR ok kK ok ok K kK K ok ok K ok ok K K ok ok K ok ok K ok ok kK ok K K ok ok K ok ok K R ok ok K ok ok K ok K K ok K ok ok kK ok ok K ok ok Kk ok ok Kk kK

ORG
nop
goto

0x0000 ; Reset vector

main ; Go to beginning of program (label "main")

3k kK ok ok ok ok ok ok ok K ok ok ok ok ko ok ok K ok Sk ko ok kK ok kK ok ok K ok ok ok o ok ok K ok ok ko ok ko ok ok ok ok kK ok ok ok ok ok K ok ok ok K ok ok ok

ORG

movwif
movE
movwif
movf

movwf

0x0004 ; Interrupt vector address
w_temp ; Save value of W register
STATUS, w ; Save value of STATUS register
status_temp

PCLATH, w ; Save value of PCLATH register

pclath_temp

KRR KR ok kK ok o Sk kK ok ok K ok ok ok ok ok K ok ok K ok ok ok kK ok ok K ok K K ok kK ok ok K ok Kk ok K ok ok K K kK ok kK R kK K kK

; This part of the program is executed in interrupt routine

banksel PIE1L

btfss PIE1l, RCIE

goto ISR Not RX232int
banksel PIEL

btfsc PIR1, RCIF

call RX232_int proc

ISR Not RX232int

movf pclath_temp,w

movw f PCLATH ; PCLATH is given its original value
mov £ status_temp,w

movwif STATUS ; STATUS is given its original value
swapf w_temp, £

swapf w_temp,w ; W is given its original value
retfie ; Return from interrupt routine

RKKK KKK KKK KKK KKK KKK Kk KKK KKK KKK KK KKK KKK KKK KKK KKK KKK KK KKK KAk Ak hkkkk ok hk

RX232_int_proc ; Check if error has occurred

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

151/155

16/2/2016
banksel
mov £
movwf
btfsc
goto
btfsc
goto
goto

RX232 int proc_ FERR

bcf

nop
nop
bsf
mov £
bsf
movf
movwif

goto

RX232_int_proc_OERR

bef
nop
nop
bsf
movf
bsf
mov £
movwf
goto

RX232_int_proc_Cont

movf
movwf
movwif

movwif

RS232_exit

return

Introduction: World of microcontrollers - Book: PIC Microcontrollers

RCSTA

RCSTA, w

RS232temp
RS232temp, FERR
RX232_int_proc_FERR
RS232temp, OERR
RX232_int proc_ OERR
RX232_int_proc_Cont

RCSTA, CREN ; To clear FERR bit, receiver is first
; switched off and on afterwards
; Delay
RCSTA, CREN
RCREG, w ; Reads receive register and clears FERR bit
Port_A, 0 ; Switches LED on (UART error indicator)
Port_A, w
PORTA
RS232 exit
RCSTA, CREN ; Clears OERR bit
; Delay
RCSTA, CREN
RCREG, w ; Reads receive register and clears FERR bit
Port A, 1 ; Switches LED on (UART error indicator)
Port A, w
PORTA
RS232_exit
RCREG, W ; Reads received data
RXchr
PORTB
TXREG ; Sends data back to PC

; Return from interrupt routine

3 kK ok kK ok ok K ok ok K ok ok ok ok ok ko ok ok K ok Sk K ok ok kK ok kK ok ok K ok ok K o ok ok K ok ok K o ok kK ok K ok ok kK ok ok K ok ok Kk ok ok K ok ok ok

; Main program

main
banksel
clrf
clrf

banksel
movlw
movwf
movlw
movwf

banksel
movlw
movwif
movwif
movlw
movwif

movwf

banksel
becf
bsf

banksel
bsf
banksel
movlw

movwf

ANSEL ; Selects bank containing ANSEL
ANSEL ; All inputs are digital
ANSELH

TRISA
b'11111100"
TRISA
b'00000000"
TRISB

PORTA
b'11111100"
PORTA
Port A
b'00000000"
PORTB
Port B

TRISC
TRISC, 6 ; RC6/TX/CK = output
TRISC, 7 ; RCT/RX/DT = input
BAUDCTL
BAUDCTL, BRGL6
SPBRG
.51 ; baud rate = 38400
; (Fosc/(4* (SPBRG+1))) Error +0.16%
SPBRG

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

152/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

clrf SPBRGH

banksel TXSTA

bcf TXSTA, TX9 ; Data is 8-bit wide

bsf TXSTA, TXEN ; Data transmission enabled

bcf TXSTA, SYNC ; Asynchronous mode

bsf TXSTA, BRGH ; High-speed Baud rate

banksel RCSTA

bsf RCSTA, SPEN ; RX/DT and TX/CK outputs configuration

becf RCSTA, RX9 ; Select mode for 8-bit data receive

bsf RCSTA, CREN ; Receive data enabled

bcf RCSTA, ADDEN ; No address detection, ninth bit may be
; used as parity bit

movi RCSTA, W

movf RCREG, W

; Interrupts enabled

banksel PIEL

bsf PIE1l, RCIE ; USART Rx interrupt enabled

bsf INTCON, PEIE ; All peripheral interrupts enabled
bsf INTCON, GIE ; Global interrupt enabled

end ; End of program

« previous chapter | table of contents | next chapter —

Book: PIC Microcontrollers
TOC Introduction Ch.1 Ch.2 Ch.3 Ch4. Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 App.A App.B App.C

Appendix C: Development Systems

How to start working?
A microcontroller is a good-natured "genie in the bottle" and no extra knowledge is required to use it.
In order to create a device controlled by the microcontroller, itis necessary to provide the simplest PC, program for compiling and simple device to transfer that code from PC to chip itself.

Even though this process is quite logical, there are often some queries, not because it is complicated, but for numerous variations. Let's take a look...

WRITING PROGRAM IN ASSEMBLY LANGUAGE

In order to write a program for the microcontroller, a specialized program in the Windows environment may be used. Any program for text processing can be used for this purpose. The point
is to write all instructions in such an order they should be executed by the microcontroller, observe the rules of assembly language and write instructions exactly as they are defined. In other
words, you just have to follow the program idea! That's all! When using custom software, there are numerous tools which are also installed to aid in the development process. One such tool

is the Simulator. This enables the user to test the code prior to burning it to the MCU.

Loop button PORTA,0,0, Increment
button PORTA,1,0,Decrement
goto Loop

Increment incf cnt, f
movf cnt,w
movwf PORTB
goto Loop

Decrement decf cnt,f
movf cnt,w
movwf PORTB

To enable the compiler to perform its task successfully, itis necessary that a document containing this program has the extension, .asm in its name, for example: Program.asm

When a specialized program (MPLAB) is used, this extension will be automatically added. If any other program for text processing (Notepad) is used then the document should be saved
and renamed. For example: Program.txt -> Program.asm.

Note for lazy ones: skip this procedure, open a new .asm document in MPLAB and simply copy/paste the text of the program written in assembly language.

COMPILING PROGRAM

The microcontroller does not understand assembly language as such. This is why it is necessary to compile the program into machine language. Itis more than simple when using a
specialized program (MPLAB) because a compiler is part of the software! Just one click on the appropriate icon solves the problem and a new document with .hex extension pops out. Itis
actually the same program, but compiled into computer language which the microcontroller perfectly understands. Such documentation is commonly named "hex code" and seemingly
represents a meaningless sequence of numbers in hexadecimal numerical system.

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/ 153/155

16/2/2016 Introduction: World of microcontrollers - Book: PIC Microcontrollers

:03000000020100FA1001000075813F
7590FFB29012010D80F97A1479D40
90110003278589EAF3698E8EB25B
A585FEA2569AD96E6DSFEDIFAD
AF6DDO0000001FF255AFEDS89EA
F3698E8EB25BA585FEA2569AD96
DAC59700D00000278E6DSFEDOFA
DAF6DD00000001FF255AFEDSFED
9FADAF6DDO00F7590FFB29013278
E6DS8FEDIFADAF6DD00000001FFE2
55AFED589EAF3698E8EB25BA585
FEA2569AD96DACS59DIFADAF6D
DO0000001FF255AFEDS8FEDOFADA
F6DDO00F7590FFB29013278E6D82
78E6D8FEDOFAS89EAF3698E8EB2
5BA585FEA2569ADY6DAF6DD000
00001FF2DAF6DD00000001FF255A
ADAF6DD00000001FF255AFEDSFE
DIOFA

In case other software for program writing in assembly language is used, special software for compiling the program must be installed and used as follows: set up the compiler, open the
document with .asm extension and compile. The resultis the same-a new document with .hex extension. The only problem you have now is thatitis stored in your PC.

PROGRAMMING A MICROCONTROLLER

To enable "hex code" transmission to the microcontroller itis necessary to provide a cable for serial communication and a special device called programmer with appropriate software.
There are several ways to do it.

A lot of programs and electronic circuits having this purpose can be found on the Internet. Do as follows: open hex code document, set a few parameters and click the icon for compiling.
After a while, a sequence of zeros and ones is to be programmed into the microcontroller through the serial connection cable and programmer hardware. There is nothing else to be done

except for placing the programmed chip into the target device. In case it is necessary to make some changes in the program, the previous procedure may be repeated an unlimited number
of times.

Is this a happy ending?
This section briefly describes the use of MPLAB and programmer software developed by Mikroelektronika. Everything is very simple...
You have already installed MPLAB, havena€ ™t you? Open a new project and a new document with extension.asm.

o e i g P TR TaTg b b

D@L Sl SR - SR E RO Sl ek | e R ERR

BEEE

il

it [rap—

e oeod § latazapt

ETECEEELEEA R R RS

[sn Smargs

ki il I S
3 :

FERAEERBdARESE

L » N

T b b

OK. You have written a program and tested it with the simulator. The program did not reports any error during the compiling process? It seems that everything is under control...

Assembling...
PRIMER1.ASM

L 100% |

Erronrs: 0
Wainings:
Reporied: 0
Suppressed. 0
Messages:
Reported: 3
Suppressed: 0

Lines Assembiled: 253

The program is written and successfully compiled. All that's left is to dump the program to the microcontroller. For this purpose itis necessary to have software that takes the written and
compiled program and passes it into the microcontroller (PIC Flash for example). Start up this program...

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

154/155

16/2/2016

Introduction: World of microcontrollers - Book: PIC Microcontrollers

The settings are simple and there is no need for additional explanations (the type of the microcontroller, frequency and clock oscillator etc.).

« Connect the PC and programmer via a USB cable;
* Load the HEX code using command: File -> Load HEX; and
¢ Click the "Write" push-button and wait...

Configuratian Bits
Dscillator | INTOSCI0 - RAE 22 /0, FAT 2210 -
Watchdog Timer Dizabled |
Pawer Lip Timer | Enabled
Master Clear | Erabied .
Daka EE Probect | Duscbled |-
Brown Dut Detect | BOD Disabled 2.
Int-Ext Switchover | Dizsbled -
Fail-safe Clk. Monitor | £ nabled 1>
Low Voltage Program | Dissbled -
In-Circuit Debugger | ICD Disablsd -
Brown-out Reset Sel. 5ot 1o 21V [=1
iD Lacations

IFFF | 3FFF | [3FFF | [3FFF

Frogram Memony S 8 K Dievice Statuz: dbe
EEPAOM Sze: 256 Byles Addrese: Dh
File: DHPIC PROJEXTIPRIMER] HEX
Device: PIC IGFBET ‘Diperation: Mone

Code Protect
& None
000K - 1FFFh{ A1)

FLASH Program Memory
Write Enable

= \aiite protection Off

I DO0DR - DOFFh Profected

" DOX - OPFFh Pictected
0000k - OFFFh Proteeted

Cabbealion weed Protest
Cal Word 011

Tepe

B —
G T |

That's it! The microcontroller is programmed and everything is ready for operation. If you are not satisfied, make some changes in the program and repeat the procedure. Until when? Until

you feel satisfied...

Development systems

A device, which in testing program phase, can simulate any environment is called a development system. Apart from the programmer, the power supply unit and the microcontrollera€™s
socket, the development system contains elements for input pin activation and output pin monitoring. The simplest version has every pin connected to one push-button and one LED as well.
A high quality version has LED displays, LCD displays, temperature sensors and all other elements which the target device can be supplied with. These peripherals could be connected to
the MCU via miniature jumpers. In this way, the whole program may be tested in practice, during its development stage, because the microcontroller does not know, or care, whether its input

is activated by a push-button or a sensor builtin a real machine.

Development system EasyPIC5

http:/www .mikroe.com/chapters/view/1/introduction-world-of-microcontrollers/

« previous chapter | table of contents

155/155

